initial commit, 4.5 stable
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
This commit is contained in:
135
thirdparty/libjpeg-turbo/LICENSE.md
vendored
Normal file
135
thirdparty/libjpeg-turbo/LICENSE.md
vendored
Normal file
@@ -0,0 +1,135 @@
|
||||
libjpeg-turbo Licenses
|
||||
======================
|
||||
|
||||
libjpeg-turbo is covered by two compatible BSD-style open source licenses:
|
||||
|
||||
- The IJG (Independent JPEG Group) License, which is listed in
|
||||
[README.ijg](README.ijg)
|
||||
|
||||
This license applies to the libjpeg API library and associated programs,
|
||||
including any code inherited from libjpeg and any modifications to that
|
||||
code. Note that the libjpeg-turbo SIMD source code bears the
|
||||
[zlib License](https://opensource.org/licenses/Zlib), but in the context of
|
||||
the overall libjpeg API library, the terms of the zlib License are subsumed
|
||||
by the terms of the IJG License.
|
||||
|
||||
- The Modified (3-clause) BSD License, which is listed below
|
||||
|
||||
This license applies to the TurboJPEG API library and associated programs, as
|
||||
well as the build system. Note that the TurboJPEG API library wraps the
|
||||
libjpeg API library, so in the context of the overall TurboJPEG API library,
|
||||
both the terms of the IJG License and the terms of the Modified (3-clause)
|
||||
BSD License apply.
|
||||
|
||||
|
||||
Complying with the libjpeg-turbo Licenses
|
||||
=========================================
|
||||
|
||||
This section provides a roll-up of the libjpeg-turbo licensing terms, to the
|
||||
best of our understanding. This is not a license in and of itself. It is
|
||||
intended solely for clarification.
|
||||
|
||||
1. If you are distributing a modified version of the libjpeg-turbo source,
|
||||
then:
|
||||
|
||||
1. You cannot alter or remove any existing copyright or license notices
|
||||
from the source.
|
||||
|
||||
**Origin**
|
||||
- Clause 1 of the IJG License
|
||||
- Clause 1 of the Modified BSD License
|
||||
- Clauses 1 and 3 of the zlib License
|
||||
|
||||
2. You must add your own copyright notice to the header of each source
|
||||
file you modified, so others can tell that you modified that file. (If
|
||||
there is not an existing copyright header in that file, then you can
|
||||
simply add a notice stating that you modified the file.)
|
||||
|
||||
**Origin**
|
||||
- Clause 1 of the IJG License
|
||||
- Clause 2 of the zlib License
|
||||
|
||||
3. You must include the IJG README file, and you must not alter any of the
|
||||
copyright or license text in that file.
|
||||
|
||||
**Origin**
|
||||
- Clause 1 of the IJG License
|
||||
|
||||
2. If you are distributing only libjpeg-turbo binaries without the source, or
|
||||
if you are distributing an application that statically links with
|
||||
libjpeg-turbo, then:
|
||||
|
||||
1. Your product documentation must include a message stating:
|
||||
|
||||
This software is based in part on the work of the Independent JPEG
|
||||
Group.
|
||||
|
||||
**Origin**
|
||||
- Clause 2 of the IJG license
|
||||
|
||||
2. If your binary distribution includes or uses the TurboJPEG API, then
|
||||
your product documentation must include the text of the Modified BSD
|
||||
License (see below.)
|
||||
|
||||
**Origin**
|
||||
- Clause 2 of the Modified BSD License
|
||||
|
||||
3. You cannot use the name of the IJG or The libjpeg-turbo Project or the
|
||||
contributors thereof in advertising, publicity, etc.
|
||||
|
||||
**Origin**
|
||||
- IJG License
|
||||
- Clause 3 of the Modified BSD License
|
||||
|
||||
4. The IJG and The libjpeg-turbo Project do not warrant libjpeg-turbo to be
|
||||
free of defects, nor do we accept any liability for undesirable
|
||||
consequences resulting from your use of the software.
|
||||
|
||||
**Origin**
|
||||
- IJG License
|
||||
- Modified BSD License
|
||||
- zlib License
|
||||
|
||||
|
||||
The Modified (3-clause) BSD License
|
||||
===================================
|
||||
|
||||
Copyright (C)2009-2024 D. R. Commander. All Rights Reserved.<br>
|
||||
Copyright (C)2015 Viktor Szathmáry. All Rights Reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright notice,
|
||||
this list of conditions and the following disclaimer.
|
||||
- Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
- Neither the name of the libjpeg-turbo Project nor the names of its
|
||||
contributors may be used to endorse or promote products derived from this
|
||||
software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS",
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
Why Two Licenses?
|
||||
=================
|
||||
|
||||
The zlib License could have been used instead of the Modified (3-clause) BSD
|
||||
License, and since the IJG License effectively subsumes the distribution
|
||||
conditions of the zlib License, this would have effectively placed
|
||||
libjpeg-turbo binary distributions under the IJG License. However, the IJG
|
||||
License specifically refers to the Independent JPEG Group and does not extend
|
||||
attribution and endorsement protections to other entities. Thus, it was
|
||||
desirable to choose a license that granted us the same protections for new code
|
||||
that were granted to the IJG for code derived from their software.
|
||||
260
thirdparty/libjpeg-turbo/README.ijg
vendored
Normal file
260
thirdparty/libjpeg-turbo/README.ijg
vendored
Normal file
@@ -0,0 +1,260 @@
|
||||
libjpeg-turbo note: This file has been modified by The libjpeg-turbo Project
|
||||
to include only information relevant to libjpeg-turbo, to wordsmith certain
|
||||
sections, and to remove impolitic language that existed in the libjpeg v8
|
||||
README. It is included only for reference. Please see README.md for
|
||||
information specific to libjpeg-turbo.
|
||||
|
||||
|
||||
The Independent JPEG Group's JPEG software
|
||||
==========================================
|
||||
|
||||
This distribution contains a release of the Independent JPEG Group's free JPEG
|
||||
software. You are welcome to redistribute this software and to use it for any
|
||||
purpose, subject to the conditions under LEGAL ISSUES, below.
|
||||
|
||||
This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone,
|
||||
Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson,
|
||||
Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers,
|
||||
and other members of the Independent JPEG Group.
|
||||
|
||||
IJG is not affiliated with the ISO/IEC JTC1/SC29/WG1 standards committee
|
||||
(also known as JPEG, together with ITU-T SG16).
|
||||
|
||||
|
||||
DOCUMENTATION ROADMAP
|
||||
=====================
|
||||
|
||||
This file contains the following sections:
|
||||
|
||||
OVERVIEW General description of JPEG and the IJG software.
|
||||
LEGAL ISSUES Copyright, lack of warranty, terms of distribution.
|
||||
REFERENCES Where to learn more about JPEG.
|
||||
ARCHIVE LOCATIONS Where to find newer versions of this software.
|
||||
FILE FORMAT WARS Software *not* to get.
|
||||
TO DO Plans for future IJG releases.
|
||||
|
||||
Other documentation files in the distribution are:
|
||||
|
||||
User documentation:
|
||||
doc/usage.txt Usage instructions for cjpeg, djpeg, jpegtran,
|
||||
rdjpgcom, and wrjpgcom.
|
||||
doc/*.1 Unix-style man pages for programs (same info as
|
||||
usage.txt).
|
||||
doc/wizard.txt Advanced usage instructions for JPEG wizards only.
|
||||
doc/change.log Version-to-version change highlights.
|
||||
Programmer and internal documentation:
|
||||
doc/libjpeg.txt How to use the JPEG library in your own programs.
|
||||
src/example.c Sample code for calling the JPEG library.
|
||||
doc/structure.txt Overview of the JPEG library's internal structure.
|
||||
doc/coderules.txt Coding style rules --- please read if you contribute
|
||||
code.
|
||||
|
||||
Please read at least usage.txt. Some information can also be found in the JPEG
|
||||
FAQ (Frequently Asked Questions) article. See ARCHIVE LOCATIONS below to find
|
||||
out where to obtain the FAQ article.
|
||||
|
||||
If you want to understand how the JPEG code works, we suggest reading one or
|
||||
more of the REFERENCES, then looking at the documentation files (in roughly
|
||||
the order listed) before diving into the code.
|
||||
|
||||
|
||||
OVERVIEW
|
||||
========
|
||||
|
||||
This package contains C software to implement JPEG image encoding, decoding,
|
||||
and transcoding. JPEG (pronounced "jay-peg") is a standardized compression
|
||||
method for full-color and grayscale images. JPEG's strong suit is compressing
|
||||
photographic images or other types of images that have smooth color and
|
||||
brightness transitions between neighboring pixels. Images with sharp lines or
|
||||
other abrupt features may not compress well with JPEG, and a higher JPEG
|
||||
quality may have to be used to avoid visible compression artifacts with such
|
||||
images.
|
||||
|
||||
JPEG is normally lossy, meaning that the output pixels are not necessarily
|
||||
identical to the input pixels. However, on photographic content and other
|
||||
"smooth" images, very good compression ratios can be obtained with no visible
|
||||
compression artifacts, and extremely high compression ratios are possible if
|
||||
you are willing to sacrifice image quality (by reducing the "quality" setting
|
||||
in the compressor.)
|
||||
|
||||
This software implements JPEG baseline, extended-sequential, progressive, and
|
||||
lossless compression processes. Provision is made for supporting all variants
|
||||
of these processes, although some uncommon parameter settings aren't
|
||||
implemented yet. We have made no provision for supporting the hierarchical
|
||||
processes defined in the standard.
|
||||
|
||||
We provide a set of library routines for reading and writing JPEG image files,
|
||||
plus two sample applications "cjpeg" and "djpeg", which use the library to
|
||||
perform conversion between JPEG and some other popular image file formats.
|
||||
The library is intended to be reused in other applications.
|
||||
|
||||
In order to support file conversion and viewing software, we have included
|
||||
considerable functionality beyond the bare JPEG coding/decoding capability;
|
||||
for example, the color quantization modules are not strictly part of JPEG
|
||||
decoding, but they are essential for output to colormapped file formats. These
|
||||
extra functions can be compiled out of the library if not required for a
|
||||
particular application.
|
||||
|
||||
We have also included "jpegtran", a utility for lossless transcoding between
|
||||
different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple
|
||||
applications for inserting and extracting textual comments in JFIF files.
|
||||
|
||||
The emphasis in designing this software has been on achieving portability and
|
||||
flexibility, while also making it fast enough to be useful. In particular,
|
||||
the software is not intended to be read as a tutorial on JPEG. (See the
|
||||
REFERENCES section for introductory material.) Rather, it is intended to
|
||||
be reliable, portable, industrial-strength code. We do not claim to have
|
||||
achieved that goal in every aspect of the software, but we strive for it.
|
||||
|
||||
We welcome the use of this software as a component of commercial products.
|
||||
No royalty is required, but we do ask for an acknowledgement in product
|
||||
documentation, as described under LEGAL ISSUES.
|
||||
|
||||
|
||||
LEGAL ISSUES
|
||||
============
|
||||
|
||||
In plain English:
|
||||
|
||||
1. We don't promise that this software works. (But if you find any bugs,
|
||||
please let us know!)
|
||||
2. You can use this software for whatever you want. You don't have to pay us.
|
||||
3. You may not pretend that you wrote this software. If you use it in a
|
||||
program, you must acknowledge somewhere in your documentation that
|
||||
you've used the IJG code.
|
||||
|
||||
In legalese:
|
||||
|
||||
The authors make NO WARRANTY or representation, either express or implied,
|
||||
with respect to this software, its quality, accuracy, merchantability, or
|
||||
fitness for a particular purpose. This software is provided "AS IS", and you,
|
||||
its user, assume the entire risk as to its quality and accuracy.
|
||||
|
||||
This software is copyright (C) 1991-2020, Thomas G. Lane, Guido Vollbeding.
|
||||
All Rights Reserved except as specified below.
|
||||
|
||||
Permission is hereby granted to use, copy, modify, and distribute this
|
||||
software (or portions thereof) for any purpose, without fee, subject to these
|
||||
conditions:
|
||||
(1) If any part of the source code for this software is distributed, then this
|
||||
README file must be included, with this copyright and no-warranty notice
|
||||
unaltered; and any additions, deletions, or changes to the original files
|
||||
must be clearly indicated in accompanying documentation.
|
||||
(2) If only executable code is distributed, then the accompanying
|
||||
documentation must state that "this software is based in part on the work of
|
||||
the Independent JPEG Group".
|
||||
(3) Permission for use of this software is granted only if the user accepts
|
||||
full responsibility for any undesirable consequences; the authors accept
|
||||
NO LIABILITY for damages of any kind.
|
||||
|
||||
These conditions apply to any software derived from or based on the IJG code,
|
||||
not just to the unmodified library. If you use our work, you ought to
|
||||
acknowledge us.
|
||||
|
||||
Permission is NOT granted for the use of any IJG author's name or company name
|
||||
in advertising or publicity relating to this software or products derived from
|
||||
it. This software may be referred to only as "the Independent JPEG Group's
|
||||
software".
|
||||
|
||||
We specifically permit and encourage the use of this software as the basis of
|
||||
commercial products, provided that all warranty or liability claims are
|
||||
assumed by the product vendor.
|
||||
|
||||
|
||||
REFERENCES
|
||||
==========
|
||||
|
||||
We recommend reading one or more of these references before trying to
|
||||
understand the innards of the JPEG software.
|
||||
|
||||
The best short technical introduction to the JPEG compression algorithm is
|
||||
Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
|
||||
Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
|
||||
(Adjacent articles in that issue discuss MPEG motion picture compression,
|
||||
applications of JPEG, and related topics.) If you don't have the CACM issue
|
||||
handy, a PDF file containing a revised version of Wallace's article is
|
||||
available at http://www.ijg.org/files/Wallace.JPEG.pdf. The file (actually
|
||||
a preprint for an article that appeared in IEEE Trans. Consumer Electronics)
|
||||
omits the sample images that appeared in CACM, but it includes corrections
|
||||
and some added material. Note: the Wallace article is copyright ACM and IEEE,
|
||||
and it may not be used for commercial purposes.
|
||||
|
||||
A somewhat less technical, more leisurely introduction to JPEG can be found in
|
||||
"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by
|
||||
M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides
|
||||
good explanations and example C code for a multitude of compression methods
|
||||
including JPEG. It is an excellent source if you are comfortable reading C
|
||||
code but don't know much about data compression in general. The book's JPEG
|
||||
sample code is far from industrial-strength, but when you are ready to look
|
||||
at a full implementation, you've got one here...
|
||||
|
||||
The best currently available description of JPEG is the textbook "JPEG Still
|
||||
Image Data Compression Standard" by William B. Pennebaker and Joan L.
|
||||
Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.
|
||||
Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG
|
||||
standards (DIS 10918-1 and draft DIS 10918-2).
|
||||
|
||||
The original JPEG standard is divided into two parts, Part 1 being the actual
|
||||
specification, while Part 2 covers compliance testing methods. Part 1 is
|
||||
titled "Digital Compression and Coding of Continuous-tone Still Images,
|
||||
Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS
|
||||
10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of
|
||||
Continuous-tone Still Images, Part 2: Compliance testing" and has document
|
||||
numbers ISO/IEC IS 10918-2, ITU-T T.83.
|
||||
|
||||
The JPEG standard does not specify all details of an interchangeable file
|
||||
format. For the omitted details, we follow the "JFIF" conventions, revision
|
||||
1.02. JFIF version 1 has been adopted as ISO/IEC 10918-5 (05/2013) and
|
||||
Recommendation ITU-T T.871 (05/2011): Information technology - Digital
|
||||
compression and coding of continuous-tone still images: JPEG File Interchange
|
||||
Format (JFIF). It is available as a free download in PDF file format from
|
||||
https://www.iso.org/standard/54989.html and http://www.itu.int/rec/T-REC-T.871.
|
||||
A PDF file of the older JFIF 1.02 specification is available at
|
||||
http://www.w3.org/Graphics/JPEG/jfif3.pdf.
|
||||
|
||||
The TIFF 6.0 file format specification can be obtained from
|
||||
http://mirrors.ctan.org/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation
|
||||
scheme found in the TIFF 6.0 spec of 3-June-92 has a number of serious
|
||||
problems. IJG does not recommend use of the TIFF 6.0 design (TIFF Compression
|
||||
tag 6). Instead, we recommend the JPEG design proposed by TIFF Technical Note
|
||||
#2 (Compression tag 7). Copies of this Note can be obtained from
|
||||
http://www.ijg.org/files/. It is expected that the next revision
|
||||
of the TIFF spec will replace the 6.0 JPEG design with the Note's design.
|
||||
Although IJG's own code does not support TIFF/JPEG, the free libtiff library
|
||||
uses our library to implement TIFF/JPEG per the Note.
|
||||
|
||||
|
||||
ARCHIVE LOCATIONS
|
||||
=================
|
||||
|
||||
The "official" archive site for this software is www.ijg.org.
|
||||
The most recent released version can always be found there in
|
||||
directory "files".
|
||||
|
||||
The JPEG FAQ (Frequently Asked Questions) article is a source of some
|
||||
general information about JPEG. It is available at
|
||||
http://www.faqs.org/faqs/jpeg-faq.
|
||||
|
||||
|
||||
FILE FORMAT COMPATIBILITY
|
||||
=========================
|
||||
|
||||
This software implements ITU T.81 | ISO/IEC 10918 with some extensions from
|
||||
ITU T.871 | ISO/IEC 10918-5 (JPEG File Interchange Format-- see REFERENCES).
|
||||
Informally, the term "JPEG image" or "JPEG file" most often refers to JFIF or
|
||||
a subset thereof, but there are other formats containing the name "JPEG" that
|
||||
are incompatible with the original JPEG standard or with JFIF (for instance,
|
||||
JPEG 2000 and JPEG XR). This software therefore does not support these
|
||||
formats. Indeed, one of the original reasons for developing this free software
|
||||
was to help force convergence on a common, interoperable format standard for
|
||||
JPEG files.
|
||||
|
||||
JFIF is a minimal or "low end" representation. TIFF/JPEG (TIFF revision 6.0 as
|
||||
modified by TIFF Technical Note #2) can be used for "high end" applications
|
||||
that need to record a lot of additional data about an image.
|
||||
|
||||
|
||||
TO DO
|
||||
=====
|
||||
|
||||
Please send bug reports, offers of help, etc. to jpeg-info@jpegclub.org.
|
||||
545
thirdparty/libjpeg-turbo/patches/0001-cmake-generated-headers.patch
vendored
Normal file
545
thirdparty/libjpeg-turbo/patches/0001-cmake-generated-headers.patch
vendored
Normal file
@@ -0,0 +1,545 @@
|
||||
diff --git a/thirdparty/libjpeg-turbo/patches/0001-cmake-generated-headers.patch b/thirdparty/libjpeg-turbo/patches/0001-cmake-generated-headers.patch
|
||||
index 72354390a6..e69de29bb2 100644
|
||||
--- a/thirdparty/libjpeg-turbo/patches/0001-cmake-generated-headers.patch
|
||||
+++ b/thirdparty/libjpeg-turbo/patches/0001-cmake-generated-headers.patch
|
||||
@@ -1,272 +0,0 @@
|
||||
-diff --git a/thirdparty/libjpeg-turbo/src/jconfig.h b/thirdparty/libjpeg-turbo/src/jconfig.h
|
||||
-new file mode 100644
|
||||
-index 0000000000..42d9654c0f
|
||||
---- /dev/null
|
||||
-+++ b/thirdparty/libjpeg-turbo/src/jconfig.h
|
||||
-@@ -0,0 +1,62 @@
|
||||
-+// Originally generated by libjpeg-turbo's cmake build, then modified to support multiple platforms.
|
||||
-+
|
||||
-+/* Version ID for the JPEG library.
|
||||
-+ * Might be useful for tests like "#if JPEG_LIB_VERSION >= 60".
|
||||
-+ */
|
||||
-+#define JPEG_LIB_VERSION 62
|
||||
-+
|
||||
-+/* libjpeg-turbo version */
|
||||
-+#define LIBJPEG_TURBO_VERSION 3.1.0
|
||||
-+
|
||||
-+/* libjpeg-turbo version in integer form */
|
||||
-+#define LIBJPEG_TURBO_VERSION_NUMBER 3001000
|
||||
-+
|
||||
-+/* Support arithmetic encoding when using 8-bit samples */
|
||||
-+#define C_ARITH_CODING_SUPPORTED 1
|
||||
-+
|
||||
-+/* Support arithmetic decoding when using 8-bit samples */
|
||||
-+#define D_ARITH_CODING_SUPPORTED 1
|
||||
-+
|
||||
-+/* Support in-memory source/destination managers */
|
||||
-+#define MEM_SRCDST_SUPPORTED 1
|
||||
-+
|
||||
-+/* Use accelerated SIMD routines when using 8-bit samples */
|
||||
-+//#define WITH_SIMD 1
|
||||
-+
|
||||
-+/* This version of libjpeg-turbo supports run-time selection of data precision,
|
||||
-+ * so BITS_IN_JSAMPLE is no longer used to specify the data precision at build
|
||||
-+ * time. However, some downstream software expects the macro to be defined.
|
||||
-+ * Since 12-bit data precision is an opt-in feature that requires explicitly
|
||||
-+ * calling 12-bit-specific libjpeg API functions and using 12-bit-specific data
|
||||
-+ * types, the unmodified portion of the libjpeg API still behaves as if it were
|
||||
-+ * built for 8-bit precision, and JSAMPLE is still literally an 8-bit data
|
||||
-+ * type. Thus, it is correct to define BITS_IN_JSAMPLE to 8 here.
|
||||
-+ */
|
||||
-+#ifndef BITS_IN_JSAMPLE
|
||||
-+#define BITS_IN_JSAMPLE 8
|
||||
-+#endif
|
||||
-+
|
||||
-+#ifdef _WIN32
|
||||
-+
|
||||
-+#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
-+
|
||||
-+/* Define "boolean" as unsigned char, not int, per Windows custom */
|
||||
-+#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
|
||||
-+typedef unsigned char boolean;
|
||||
-+#endif
|
||||
-+#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
|
||||
-+
|
||||
-+/* Define "INT32" as int, not long, per Windows custom */
|
||||
-+#if !(defined(_BASETSD_H_) || defined(_BASETSD_H)) /* don't conflict if basetsd.h already read */
|
||||
-+typedef short INT16;
|
||||
-+typedef signed int INT32;
|
||||
-+#endif
|
||||
-+#define XMD_H /* prevent jmorecfg.h from redefining it */
|
||||
-+
|
||||
-+#else
|
||||
-+
|
||||
-+/* Define if your (broken) compiler shifts signed values as if they were
|
||||
-+ unsigned. */
|
||||
-+/* #undef RIGHT_SHIFT_IS_UNSIGNED */
|
||||
-+
|
||||
-+#endif
|
||||
-diff --git a/thirdparty/libjpeg-turbo/src/jconfigint.h b/thirdparty/libjpeg-turbo/src/jconfigint.h
|
||||
-new file mode 100644
|
||||
---- /dev/null
|
||||
-+++ b/thirdparty/libjpeg-turbo/src/jconfigint.h
|
||||
-@@ -0,0 +1,102 @@
|
||||
-+// Originally generated by libjpeg-turbo's cmake build, then modified to support multiple platforms.
|
||||
-+
|
||||
-+/* libjpeg-turbo build number */
|
||||
-+#define BUILD "20250317"
|
||||
-+
|
||||
-+/* How to hide global symbols. */
|
||||
-+#ifndef HIDDEN
|
||||
-+ #if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
|
||||
-+ #define HIDDEN __attribute__((visibility("hidden")))
|
||||
-+ #else
|
||||
-+ #define HIDDEN
|
||||
-+ #endif
|
||||
-+#endif
|
||||
-+
|
||||
-+/* Compiler's inline keyword */
|
||||
-+#undef inline
|
||||
-+
|
||||
-+/* How to obtain function inlining. */
|
||||
-+#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
|
||||
-+ #define INLINE __inline__ __attribute__((always_inline))
|
||||
-+#else
|
||||
-+ #define INLINE inline
|
||||
-+#endif
|
||||
-+
|
||||
-+/* How to obtain thread-local storage */
|
||||
-+#if defined(_MSC_VER)
|
||||
-+#define THREAD_LOCAL __declspec(thread)
|
||||
-+#else
|
||||
-+#define THREAD_LOCAL __thread
|
||||
-+#endif
|
||||
-+
|
||||
-+/* Define to the full name of this package. */
|
||||
-+#define PACKAGE_NAME "libjpeg-turbo"
|
||||
-+
|
||||
-+/* Version number of package */
|
||||
-+#define VERSION "3.1.0"
|
||||
-+
|
||||
-+/* The size of `size_t', as computed by sizeof. */
|
||||
-+#if defined(__SIZEOF_SIZE_T__)
|
||||
-+ #define SIZEOF_SIZE_T __SIZEOF_SIZE_T__
|
||||
-+#elif defined(_WIN64)
|
||||
-+ #define SIZEOF_SIZE_T 8
|
||||
-+#elif defined(_WIN32)
|
||||
-+ #define SIZEOF_SIZE_T 4
|
||||
-+#else
|
||||
-+ #error "Cannot determine size of size_t"
|
||||
-+#endif
|
||||
-+
|
||||
-+/* Define if your compiler has __builtin_ctzl() and sizeof(unsigned long) == sizeof(size_t). */
|
||||
-+#if defined(__GNUC__)
|
||||
-+ #define HAVE_BUILTIN_CTZL
|
||||
-+#endif
|
||||
-+
|
||||
-+/* Define to 1 if you have the <intrin.h> header file. */
|
||||
-+/* #undef HAVE_INTRIN_H */
|
||||
-+
|
||||
-+#if defined(_MSC_VER) && defined(HAVE_INTRIN_H)
|
||||
-+#if (SIZEOF_SIZE_T == 8)
|
||||
-+#define HAVE_BITSCANFORWARD64
|
||||
-+#elif (SIZEOF_SIZE_T == 4)
|
||||
-+#define HAVE_BITSCANFORWARD
|
||||
-+#endif
|
||||
-+#endif
|
||||
-+
|
||||
-+#if defined(__has_attribute)
|
||||
-+#if __has_attribute(fallthrough)
|
||||
-+#define FALLTHROUGH __attribute__((fallthrough));
|
||||
-+#else
|
||||
-+#define FALLTHROUGH
|
||||
-+#endif
|
||||
-+#else
|
||||
-+#define FALLTHROUGH
|
||||
-+#endif
|
||||
-+
|
||||
-+/*
|
||||
-+ * Define BITS_IN_JSAMPLE as either
|
||||
-+ * 8 for 8-bit sample values (the usual setting)
|
||||
-+ * 12 for 12-bit sample values
|
||||
-+ * Only 8 and 12 are legal data precisions for lossy JPEG according to the
|
||||
-+ * JPEG standard, and the IJG code does not support anything else!
|
||||
-+ */
|
||||
-+
|
||||
-+#ifndef BITS_IN_JSAMPLE
|
||||
-+#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
|
||||
-+#endif
|
||||
-+
|
||||
-+#undef C_ARITH_CODING_SUPPORTED
|
||||
-+#undef D_ARITH_CODING_SUPPORTED
|
||||
-+#undef WITH_SIMD
|
||||
-+
|
||||
-+#if BITS_IN_JSAMPLE == 8
|
||||
-+
|
||||
-+/* Support arithmetic encoding */
|
||||
-+#define C_ARITH_CODING_SUPPORTED 1
|
||||
-+
|
||||
-+/* Support arithmetic decoding */
|
||||
-+#define D_ARITH_CODING_SUPPORTED 1
|
||||
-+
|
||||
-+/* Use accelerated SIMD routines. */
|
||||
-+//#define WITH_SIMD 1
|
||||
-+
|
||||
-+#endif
|
||||
-diff --git a/thirdparty/libjpeg-turbo/src/jmorecfg.h b/thirdparty/libjpeg-turbo/src/jmorecfg.h
|
||||
---- a/thirdparty/libjpeg-turbo/src/jmorecfg.h
|
||||
-+++ b/thirdparty/libjpeg-turbo/src/jmorecfg.h
|
||||
-@@ -1,3 +1,5 @@
|
||||
-+// Modified to remove lossless jpeg support.
|
||||
-+
|
||||
- /*
|
||||
- * jmorecfg.h
|
||||
- *
|
||||
-@@ -8,6 +10,6 @@
|
||||
- * Copyright (C) 1999, Ken Murchison.
|
||||
- * libjpeg-turbo Modifications:
|
||||
- * Copyright (C) 2009, 2011, 2014-2015, 2018, 2020, 2022, D. R. Commander.
|
||||
- * For conditions of distribution and use, see the accompanying README.ijg
|
||||
- * file.
|
||||
- *
|
||||
-@@ -242,7 +244,7 @@ typedef int boolean;
|
||||
-
|
||||
- #define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
- #define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
|
||||
--#define C_LOSSLESS_SUPPORTED /* Lossless JPEG? */
|
||||
-+//#define C_LOSSLESS_SUPPORTED /* Lossless JPEG? */
|
||||
- #define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
|
||||
- /* Note: if you selected 12-bit data precision, it is dangerous to turn off
|
||||
- * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
|
||||
-@@ -259,7 +263,7 @@ typedef int boolean;
|
||||
-
|
||||
- #define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
- #define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
|
||||
--#define D_LOSSLESS_SUPPORTED /* Lossless JPEG? */
|
||||
-+//#define D_LOSSLESS_SUPPORTED /* Lossless JPEG? */
|
||||
- #define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
|
||||
- #define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
|
||||
- #define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
|
||||
-diff --git a/thirdparty/libjpeg-turbo/src/jversion.h b/thirdparty/libjpeg-turbo/src/jversion.h
|
||||
-new file mode 100644
|
||||
---- /dev/null
|
||||
-+++ b/thirdparty/libjpeg-turbo/src/jversion.h
|
||||
-@@ -0,0 +18446744073709551615,58 @@
|
||||
-+// Originally generated by libjpeg-turbo's cmake build, then modified to support multiple platforms.
|
||||
-+
|
||||
-+/*
|
||||
-+ * jversion.h
|
||||
-+ *
|
||||
-+ * This file was part of the Independent JPEG Group's software:
|
||||
-+ * Copyright (C) 1991-2020, Thomas G. Lane, Guido Vollbeding.
|
||||
-+ * libjpeg-turbo Modifications:
|
||||
-+ * Copyright (C) 2010, 2012-2024, D. R. Commander.
|
||||
-+ * For conditions of distribution and use, see the accompanying README.ijg
|
||||
-+ * file.
|
||||
-+ *
|
||||
-+ * This file contains software version identification.
|
||||
-+ */
|
||||
-+
|
||||
-+
|
||||
-+#if JPEG_LIB_VERSION >= 80
|
||||
-+
|
||||
-+#define JVERSION "8d 15-Jan-2012"
|
||||
-+
|
||||
-+#elif JPEG_LIB_VERSION >= 70
|
||||
-+
|
||||
-+#define JVERSION "7 27-Jun-2009"
|
||||
-+
|
||||
-+#else
|
||||
-+
|
||||
-+#define JVERSION "6b 27-Mar-1998"
|
||||
-+
|
||||
-+#endif
|
||||
-+
|
||||
-+/*
|
||||
-+ * NOTE: It is our convention to place the authors in the following order:
|
||||
-+ * - libjpeg-turbo authors (2009-) in descending order of the date of their
|
||||
-+ * most recent contribution to the project, then in ascending order of the
|
||||
-+ * date of their first contribution to the project, then in alphabetical
|
||||
-+ * order
|
||||
-+ * - Upstream authors in descending order of the date of the first inclusion of
|
||||
-+ * their code
|
||||
-+ */
|
||||
-+
|
||||
-+#define JCOPYRIGHT1 \
|
||||
-+ "Copyright (C) 2009-2024 D. R. Commander\n" \
|
||||
-+ "Copyright (C) 2015, 2020 Google, Inc.\n" \
|
||||
-+ "Copyright (C) 2019-2020 Arm Limited\n" \
|
||||
-+ "Copyright (C) 2015-2016, 2018 Matthieu Darbois\n" \
|
||||
-+ "Copyright (C) 2011-2016 Siarhei Siamashka\n" \
|
||||
-+ "Copyright (C) 2015 Intel Corporation\n"
|
||||
-+#define JCOPYRIGHT2 \
|
||||
-+ "Copyright (C) 2013-2014 Linaro Limited\n" \
|
||||
-+ "Copyright (C) 2013-2014 MIPS Technologies, Inc.\n" \
|
||||
-+ "Copyright (C) 2009, 2012 Pierre Ossman for Cendio AB\n" \
|
||||
-+ "Copyright (C) 2009-2011 Nokia Corporation and/or its subsidiary(-ies)\n" \
|
||||
-+ "Copyright (C) 1999-2006 MIYASAKA Masaru\n" \
|
||||
-+ "Copyright (C) 1999 Ken Murchison\n" \
|
||||
-+ "Copyright (C) 1991-2020 Thomas G. Lane, Guido Vollbeding\n"
|
||||
-+
|
||||
-+#define JCOPYRIGHT_SHORT \
|
||||
-+ "Copyright (C) 1991-2024 The libjpeg-turbo Project and many others"
|
||||
diff --git a/thirdparty/libjpeg-turbo/src/jconfig.h b/thirdparty/libjpeg-turbo/src/jconfig.h
|
||||
new file mode 100644
|
||||
index 0000000000..42d9654c0f
|
||||
--- /dev/null
|
||||
+++ b/thirdparty/libjpeg-turbo/src/jconfig.h
|
||||
@@ -0,0 +1,62 @@
|
||||
+// Originally generated by libjpeg-turbo's cmake build, then modified to support multiple platforms.
|
||||
+
|
||||
+/* Version ID for the JPEG library.
|
||||
+ * Might be useful for tests like "#if JPEG_LIB_VERSION >= 60".
|
||||
+ */
|
||||
+#define JPEG_LIB_VERSION 62
|
||||
+
|
||||
+/* libjpeg-turbo version */
|
||||
+#define LIBJPEG_TURBO_VERSION 3.1.0
|
||||
+
|
||||
+/* libjpeg-turbo version in integer form */
|
||||
+#define LIBJPEG_TURBO_VERSION_NUMBER 3001000
|
||||
+
|
||||
+/* Support arithmetic encoding when using 8-bit samples */
|
||||
+#define C_ARITH_CODING_SUPPORTED 1
|
||||
+
|
||||
+/* Support arithmetic decoding when using 8-bit samples */
|
||||
+#define D_ARITH_CODING_SUPPORTED 1
|
||||
+
|
||||
+/* Support in-memory source/destination managers */
|
||||
+#define MEM_SRCDST_SUPPORTED 1
|
||||
+
|
||||
+/* Use accelerated SIMD routines when using 8-bit samples */
|
||||
+//#define WITH_SIMD 1
|
||||
+
|
||||
+/* This version of libjpeg-turbo supports run-time selection of data precision,
|
||||
+ * so BITS_IN_JSAMPLE is no longer used to specify the data precision at build
|
||||
+ * time. However, some downstream software expects the macro to be defined.
|
||||
+ * Since 12-bit data precision is an opt-in feature that requires explicitly
|
||||
+ * calling 12-bit-specific libjpeg API functions and using 12-bit-specific data
|
||||
+ * types, the unmodified portion of the libjpeg API still behaves as if it were
|
||||
+ * built for 8-bit precision, and JSAMPLE is still literally an 8-bit data
|
||||
+ * type. Thus, it is correct to define BITS_IN_JSAMPLE to 8 here.
|
||||
+ */
|
||||
+#ifndef BITS_IN_JSAMPLE
|
||||
+#define BITS_IN_JSAMPLE 8
|
||||
+#endif
|
||||
+
|
||||
+#ifdef _WIN32
|
||||
+
|
||||
+#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
+
|
||||
+/* Define "boolean" as unsigned char, not int, per Windows custom */
|
||||
+#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
|
||||
+typedef unsigned char boolean;
|
||||
+#endif
|
||||
+#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
|
||||
+
|
||||
+/* Define "INT32" as int, not long, per Windows custom */
|
||||
+#if !(defined(_BASETSD_H_) || defined(_BASETSD_H)) /* don't conflict if basetsd.h already read */
|
||||
+typedef short INT16;
|
||||
+typedef signed int INT32;
|
||||
+#endif
|
||||
+#define XMD_H /* prevent jmorecfg.h from redefining it */
|
||||
+
|
||||
+#else
|
||||
+
|
||||
+/* Define if your (broken) compiler shifts signed values as if they were
|
||||
+ unsigned. */
|
||||
+/* #undef RIGHT_SHIFT_IS_UNSIGNED */
|
||||
+
|
||||
+#endif
|
||||
diff --git a/thirdparty/libjpeg-turbo/src/jconfigint.h b/thirdparty/libjpeg-turbo/src/jconfigint.h
|
||||
new file mode 100644
|
||||
index 0000000000..45bd3ec321
|
||||
--- /dev/null
|
||||
+++ b/thirdparty/libjpeg-turbo/src/jconfigint.h
|
||||
@@ -0,0 +1,102 @@
|
||||
+// Originally generated by libjpeg-turbo's cmake build, then modified to support multiple platforms.
|
||||
+
|
||||
+/* libjpeg-turbo build number */
|
||||
+#define BUILD "20250317"
|
||||
+
|
||||
+/* How to hide global symbols. */
|
||||
+#ifndef HIDDEN
|
||||
+ #if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
|
||||
+ #define HIDDEN __attribute__((visibility("hidden")))
|
||||
+ #else
|
||||
+ #define HIDDEN
|
||||
+ #endif
|
||||
+#endif
|
||||
+
|
||||
+/* Compiler's inline keyword */
|
||||
+#undef inline
|
||||
+
|
||||
+/* How to obtain function inlining. */
|
||||
+#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
|
||||
+ #define INLINE __inline__ __attribute__((always_inline))
|
||||
+#else
|
||||
+ #define INLINE inline
|
||||
+#endif
|
||||
+
|
||||
+/* How to obtain thread-local storage */
|
||||
+#if defined(_MSC_VER)
|
||||
+#define THREAD_LOCAL __declspec(thread)
|
||||
+#else
|
||||
+#define THREAD_LOCAL __thread
|
||||
+#endif
|
||||
+
|
||||
+/* Define to the full name of this package. */
|
||||
+#define PACKAGE_NAME "libjpeg-turbo"
|
||||
+
|
||||
+/* Version number of package */
|
||||
+#define VERSION "3.1.0"
|
||||
+
|
||||
+/* The size of `size_t', as computed by sizeof. */
|
||||
+#if defined(__SIZEOF_SIZE_T__)
|
||||
+ #define SIZEOF_SIZE_T __SIZEOF_SIZE_T__
|
||||
+#elif defined(_WIN64)
|
||||
+ #define SIZEOF_SIZE_T 8
|
||||
+#elif defined(_WIN32)
|
||||
+ #define SIZEOF_SIZE_T 4
|
||||
+#else
|
||||
+ #error "Cannot determine size of size_t"
|
||||
+#endif
|
||||
+
|
||||
+/* Define if your compiler has __builtin_ctzl() and sizeof(unsigned long) == sizeof(size_t). */
|
||||
+#if defined(__GNUC__)
|
||||
+ #define HAVE_BUILTIN_CTZL
|
||||
+#endif
|
||||
+
|
||||
+/* Define to 1 if you have the <intrin.h> header file. */
|
||||
+/* #undef HAVE_INTRIN_H */
|
||||
+
|
||||
+#if defined(_MSC_VER) && defined(HAVE_INTRIN_H)
|
||||
+#if (SIZEOF_SIZE_T == 8)
|
||||
+#define HAVE_BITSCANFORWARD64
|
||||
+#elif (SIZEOF_SIZE_T == 4)
|
||||
+#define HAVE_BITSCANFORWARD
|
||||
+#endif
|
||||
+#endif
|
||||
+
|
||||
+#if defined(__has_attribute)
|
||||
+#if __has_attribute(fallthrough)
|
||||
+#define FALLTHROUGH __attribute__((fallthrough));
|
||||
+#else
|
||||
+#define FALLTHROUGH
|
||||
+#endif
|
||||
+#else
|
||||
+#define FALLTHROUGH
|
||||
+#endif
|
||||
+
|
||||
+/*
|
||||
+ * Define BITS_IN_JSAMPLE as either
|
||||
+ * 8 for 8-bit sample values (the usual setting)
|
||||
+ * 12 for 12-bit sample values
|
||||
+ * Only 8 and 12 are legal data precisions for lossy JPEG according to the
|
||||
+ * JPEG standard, and the IJG code does not support anything else!
|
||||
+ */
|
||||
+
|
||||
+#ifndef BITS_IN_JSAMPLE
|
||||
+#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
|
||||
+#endif
|
||||
+
|
||||
+#undef C_ARITH_CODING_SUPPORTED
|
||||
+#undef D_ARITH_CODING_SUPPORTED
|
||||
+#undef WITH_SIMD
|
||||
+
|
||||
+#if BITS_IN_JSAMPLE == 8
|
||||
+
|
||||
+/* Support arithmetic encoding */
|
||||
+#define C_ARITH_CODING_SUPPORTED 1
|
||||
+
|
||||
+/* Support arithmetic decoding */
|
||||
+#define D_ARITH_CODING_SUPPORTED 1
|
||||
+
|
||||
+/* Use accelerated SIMD routines. */
|
||||
+//#define WITH_SIMD 1
|
||||
+
|
||||
+#endif
|
||||
diff --git a/thirdparty/libjpeg-turbo/src/jmorecfg.h b/thirdparty/libjpeg-turbo/src/jmorecfg.h
|
||||
index 89c7842c87..c96edd2300 100644
|
||||
--- a/thirdparty/libjpeg-turbo/src/jmorecfg.h
|
||||
+++ b/thirdparty/libjpeg-turbo/src/jmorecfg.h
|
||||
@@ -1,3 +1,5 @@
|
||||
+// Modified to remove lossless jpeg support.
|
||||
+
|
||||
/*
|
||||
* jmorecfg.h
|
||||
*
|
||||
@@ -242,7 +244,7 @@ typedef int boolean;
|
||||
|
||||
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
|
||||
-#define C_LOSSLESS_SUPPORTED /* Lossless JPEG? */
|
||||
+//#define C_LOSSLESS_SUPPORTED /* Lossless JPEG? */
|
||||
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
|
||||
/* Note: if you selected 12-bit data precision, it is dangerous to turn off
|
||||
* ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
|
||||
@@ -259,7 +261,7 @@ typedef int boolean;
|
||||
|
||||
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
|
||||
-#define D_LOSSLESS_SUPPORTED /* Lossless JPEG? */
|
||||
+//#define D_LOSSLESS_SUPPORTED /* Lossless JPEG? */
|
||||
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
|
||||
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
|
||||
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
|
||||
diff --git a/thirdparty/libjpeg-turbo/src/jversion.h b/thirdparty/libjpeg-turbo/src/jversion.h
|
||||
new file mode 100644
|
||||
index 0000000000..40f7a6cc82
|
||||
--- /dev/null
|
||||
+++ b/thirdparty/libjpeg-turbo/src/jversion.h
|
||||
@@ -0,0 +1,58 @@
|
||||
+// Originally generated by libjpeg-turbo's cmake build, then modified to support multiple platforms.
|
||||
+
|
||||
+/*
|
||||
+ * jversion.h
|
||||
+ *
|
||||
+ * This file was part of the Independent JPEG Group's software:
|
||||
+ * Copyright (C) 1991-2020, Thomas G. Lane, Guido Vollbeding.
|
||||
+ * libjpeg-turbo Modifications:
|
||||
+ * Copyright (C) 2010, 2012-2024, D. R. Commander.
|
||||
+ * For conditions of distribution and use, see the accompanying README.ijg
|
||||
+ * file.
|
||||
+ *
|
||||
+ * This file contains software version identification.
|
||||
+ */
|
||||
+
|
||||
+
|
||||
+#if JPEG_LIB_VERSION >= 80
|
||||
+
|
||||
+#define JVERSION "8d 15-Jan-2012"
|
||||
+
|
||||
+#elif JPEG_LIB_VERSION >= 70
|
||||
+
|
||||
+#define JVERSION "7 27-Jun-2009"
|
||||
+
|
||||
+#else
|
||||
+
|
||||
+#define JVERSION "6b 27-Mar-1998"
|
||||
+
|
||||
+#endif
|
||||
+
|
||||
+/*
|
||||
+ * NOTE: It is our convention to place the authors in the following order:
|
||||
+ * - libjpeg-turbo authors (2009-) in descending order of the date of their
|
||||
+ * most recent contribution to the project, then in ascending order of the
|
||||
+ * date of their first contribution to the project, then in alphabetical
|
||||
+ * order
|
||||
+ * - Upstream authors in descending order of the date of the first inclusion of
|
||||
+ * their code
|
||||
+ */
|
||||
+
|
||||
+#define JCOPYRIGHT1 \
|
||||
+ "Copyright (C) 2009-2024 D. R. Commander\n" \
|
||||
+ "Copyright (C) 2015, 2020 Google, Inc.\n" \
|
||||
+ "Copyright (C) 2019-2020 Arm Limited\n" \
|
||||
+ "Copyright (C) 2015-2016, 2018 Matthieu Darbois\n" \
|
||||
+ "Copyright (C) 2011-2016 Siarhei Siamashka\n" \
|
||||
+ "Copyright (C) 2015 Intel Corporation\n"
|
||||
+#define JCOPYRIGHT2 \
|
||||
+ "Copyright (C) 2013-2014 Linaro Limited\n" \
|
||||
+ "Copyright (C) 2013-2014 MIPS Technologies, Inc.\n" \
|
||||
+ "Copyright (C) 2009, 2012 Pierre Ossman for Cendio AB\n" \
|
||||
+ "Copyright (C) 2009-2011 Nokia Corporation and/or its subsidiary(-ies)\n" \
|
||||
+ "Copyright (C) 1999-2006 MIYASAKA Masaru\n" \
|
||||
+ "Copyright (C) 1999 Ken Murchison\n" \
|
||||
+ "Copyright (C) 1991-2020 Thomas G. Lane, Guido Vollbeding\n"
|
||||
+
|
||||
+#define JCOPYRIGHT_SHORT \
|
||||
+ "Copyright (C) 1991-2024 The libjpeg-turbo Project and many others"
|
||||
20
thirdparty/libjpeg-turbo/patches/0002-disable-16bitlossless.patch
vendored
Normal file
20
thirdparty/libjpeg-turbo/patches/0002-disable-16bitlossless.patch
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
commit 462c1cd875ae8f6b5f6406dda01881fb173ac30c
|
||||
Author: Daniel Kinsman <danielkinsman@riseup.net>
|
||||
Date: Thu Mar 20 12:21:28 2025 +1100
|
||||
|
||||
remove unneeded source files and lossless jpeg support
|
||||
|
||||
diff --git a/thirdparty/libjpeg-turbo/src/turbojpeg.c b/thirdparty/libjpeg-turbo/src/turbojpeg.c
|
||||
index 389aea55d3..eec8e2a616 100644
|
||||
--- a/thirdparty/libjpeg-turbo/src/turbojpeg.c
|
||||
+++ b/thirdparty/libjpeg-turbo/src/turbojpeg.c
|
||||
@@ -1200,9 +1200,6 @@ bailout:
|
||||
#define BITS_IN_JSAMPLE 12
|
||||
#include "turbojpeg-mp.c"
|
||||
#undef BITS_IN_JSAMPLE
|
||||
-#define BITS_IN_JSAMPLE 16
|
||||
-#include "turbojpeg-mp.c"
|
||||
-#undef BITS_IN_JSAMPLE
|
||||
|
||||
/* TurboJPEG 1.2+ */
|
||||
DLLEXPORT int tjCompress2(tjhandle handle, const unsigned char *srcBuf,
|
||||
329
thirdparty/libjpeg-turbo/patches/0003-remove-bmp-ppm-support.patch
vendored
Normal file
329
thirdparty/libjpeg-turbo/patches/0003-remove-bmp-ppm-support.patch
vendored
Normal file
@@ -0,0 +1,329 @@
|
||||
diff --git a/thirdparty/libjpeg-turbo/src/turbojpeg-mp.c b/thirdparty/libjpeg-turbo/src/turbojpeg-mp.c
|
||||
index 1fa63b8185..72f99e236a 100644
|
||||
--- a/thirdparty/libjpeg-turbo/src/turbojpeg-mp.c
|
||||
+++ b/thirdparty/libjpeg-turbo/src/turbojpeg-mp.c
|
||||
@@ -286,271 +286,6 @@ bailout:
|
||||
return retval;
|
||||
}
|
||||
|
||||
-
|
||||
-/*************************** Packed-Pixel Image I/O **************************/
|
||||
-
|
||||
-/* TurboJPEG 3.0+ */
|
||||
-DLLEXPORT _JSAMPLE *GET_NAME(tj3LoadImage, BITS_IN_JSAMPLE)
|
||||
- (tjhandle handle, const char *filename, int *width, int align, int *height,
|
||||
- int *pixelFormat)
|
||||
-{
|
||||
- static const char FUNCTION_NAME[] =
|
||||
- GET_STRING(tj3LoadImage, BITS_IN_JSAMPLE);
|
||||
-
|
||||
-#if BITS_IN_JSAMPLE != 16 || defined(C_LOSSLESS_SUPPORTED)
|
||||
-
|
||||
- int retval = 0, tempc;
|
||||
- size_t pitch;
|
||||
- tjhandle handle2 = NULL;
|
||||
- tjinstance *this2;
|
||||
- j_compress_ptr cinfo = NULL;
|
||||
- cjpeg_source_ptr src;
|
||||
- _JSAMPLE *dstBuf = NULL;
|
||||
- FILE *file = NULL;
|
||||
- boolean invert;
|
||||
-
|
||||
- GET_TJINSTANCE(handle, NULL)
|
||||
-
|
||||
- if (!filename || !width || align < 1 || !height || !pixelFormat ||
|
||||
- *pixelFormat < TJPF_UNKNOWN || *pixelFormat >= TJ_NUMPF)
|
||||
- THROW("Invalid argument");
|
||||
- if ((align & (align - 1)) != 0)
|
||||
- THROW("Alignment must be a power of 2");
|
||||
-
|
||||
- /* The instance handle passed to this function is used only for parameter
|
||||
- retrieval. Create a new temporary instance to avoid interfering with the
|
||||
- libjpeg state of the primary instance. */
|
||||
- if ((handle2 = tj3Init(TJINIT_COMPRESS)) == NULL) return NULL;
|
||||
- this2 = (tjinstance *)handle2;
|
||||
- cinfo = &this2->cinfo;
|
||||
-
|
||||
-#ifdef _MSC_VER
|
||||
- if (fopen_s(&file, filename, "rb") || file == NULL)
|
||||
-#else
|
||||
- if ((file = fopen(filename, "rb")) == NULL)
|
||||
-#endif
|
||||
- THROW_UNIX("Cannot open input file");
|
||||
-
|
||||
- if ((tempc = getc(file)) < 0 || ungetc(tempc, file) == EOF)
|
||||
- THROW_UNIX("Could not read input file")
|
||||
- else if (tempc == EOF)
|
||||
- THROW("Input file contains no data");
|
||||
-
|
||||
- if (setjmp(this2->jerr.setjmp_buffer)) {
|
||||
- /* If we get here, the JPEG code has signaled an error. */
|
||||
- retval = -1; goto bailout;
|
||||
- }
|
||||
-
|
||||
- cinfo->data_precision = BITS_IN_JSAMPLE;
|
||||
- if (*pixelFormat == TJPF_UNKNOWN) cinfo->in_color_space = JCS_UNKNOWN;
|
||||
- else cinfo->in_color_space = pf2cs[*pixelFormat];
|
||||
- if (tempc == 'B') {
|
||||
- if ((src = jinit_read_bmp(cinfo, FALSE)) == NULL)
|
||||
- THROW("Could not initialize bitmap loader");
|
||||
- invert = !this->bottomUp;
|
||||
- } else if (tempc == 'P') {
|
||||
-#if BITS_IN_JSAMPLE == 8
|
||||
- if (this->precision >= 2 && this->precision <= BITS_IN_JSAMPLE)
|
||||
-#else
|
||||
- if (this->precision >= BITS_IN_JSAMPLE - 3 &&
|
||||
- this->precision <= BITS_IN_JSAMPLE)
|
||||
-#endif
|
||||
- cinfo->data_precision = this->precision;
|
||||
- if ((src = _jinit_read_ppm(cinfo)) == NULL)
|
||||
- THROW("Could not initialize PPM loader");
|
||||
- invert = this->bottomUp;
|
||||
- } else
|
||||
- THROW("Unsupported file type");
|
||||
-
|
||||
- cinfo->mem->max_memory_to_use = (long)this->maxMemory * 1048576L;
|
||||
-
|
||||
- src->input_file = file;
|
||||
- /* Refuse to load images larger than the specified size. */
|
||||
- src->max_pixels = this->maxPixels;
|
||||
- (*src->start_input) (cinfo, src);
|
||||
- if (tempc == 'B') {
|
||||
- if (cinfo->X_density && cinfo->Y_density) {
|
||||
- this->xDensity = cinfo->X_density;
|
||||
- this->yDensity = cinfo->Y_density;
|
||||
- this->densityUnits = cinfo->density_unit;
|
||||
- }
|
||||
- }
|
||||
- (*cinfo->mem->realize_virt_arrays) ((j_common_ptr)cinfo);
|
||||
-
|
||||
- *width = cinfo->image_width; *height = cinfo->image_height;
|
||||
- *pixelFormat = cs2pf[cinfo->in_color_space];
|
||||
-
|
||||
- pitch = PAD((*width) * tjPixelSize[*pixelFormat], align);
|
||||
- if (
|
||||
-#if ULLONG_MAX > SIZE_MAX
|
||||
- (unsigned long long)pitch * (unsigned long long)(*height) >
|
||||
- (unsigned long long)((size_t)-1) ||
|
||||
-#endif
|
||||
- (dstBuf = (_JSAMPLE *)malloc(pitch * (*height) *
|
||||
- sizeof(_JSAMPLE))) == NULL)
|
||||
- THROW("Memory allocation failure");
|
||||
-
|
||||
- if (setjmp(this2->jerr.setjmp_buffer)) {
|
||||
- /* If we get here, the JPEG code has signaled an error. */
|
||||
- retval = -1; goto bailout;
|
||||
- }
|
||||
-
|
||||
- while (cinfo->next_scanline < cinfo->image_height) {
|
||||
- int i, nlines = (*src->get_pixel_rows) (cinfo, src);
|
||||
-
|
||||
- for (i = 0; i < nlines; i++) {
|
||||
- _JSAMPLE *dstptr;
|
||||
- int row;
|
||||
-
|
||||
- row = cinfo->next_scanline + i;
|
||||
- if (invert) dstptr = &dstBuf[((*height) - row - 1) * pitch];
|
||||
- else dstptr = &dstBuf[row * pitch];
|
||||
- memcpy(dstptr, src->_buffer[i],
|
||||
- (*width) * tjPixelSize[*pixelFormat] * sizeof(_JSAMPLE));
|
||||
- }
|
||||
- cinfo->next_scanline += nlines;
|
||||
- }
|
||||
-
|
||||
- (*src->finish_input) (cinfo, src);
|
||||
-
|
||||
-bailout:
|
||||
- tj3Destroy(handle2);
|
||||
- if (file) fclose(file);
|
||||
- if (retval < 0) { free(dstBuf); dstBuf = NULL; }
|
||||
- return dstBuf;
|
||||
-
|
||||
-#else /* BITS_IN_JSAMPLE != 16 || defined(C_LOSSLESS_SUPPORTED) */
|
||||
-
|
||||
- static const char ERROR_MSG[] =
|
||||
- "16-bit data precision requires lossless JPEG,\n"
|
||||
- "which was disabled at build time.";
|
||||
- _JSAMPLE *retval = NULL;
|
||||
-
|
||||
- GET_TJINSTANCE(handle, NULL)
|
||||
- SNPRINTF(this->errStr, JMSG_LENGTH_MAX, "%s(): %s", FUNCTION_NAME,
|
||||
- ERROR_MSG);
|
||||
- this->isInstanceError = TRUE; THROWG(ERROR_MSG, NULL)
|
||||
-
|
||||
-bailout:
|
||||
- return retval;
|
||||
-
|
||||
-#endif
|
||||
-}
|
||||
-
|
||||
-
|
||||
-/* TurboJPEG 3.0+ */
|
||||
-DLLEXPORT int GET_NAME(tj3SaveImage, BITS_IN_JSAMPLE)
|
||||
- (tjhandle handle, const char *filename, const _JSAMPLE *buffer, int width,
|
||||
- int pitch, int height, int pixelFormat)
|
||||
-{
|
||||
- static const char FUNCTION_NAME[] =
|
||||
- GET_STRING(tj3SaveImage, BITS_IN_JSAMPLE);
|
||||
- int retval = 0;
|
||||
-
|
||||
-#if BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED)
|
||||
-
|
||||
- tjhandle handle2 = NULL;
|
||||
- tjinstance *this2;
|
||||
- j_decompress_ptr dinfo = NULL;
|
||||
- djpeg_dest_ptr dst;
|
||||
- FILE *file = NULL;
|
||||
- char *ptr = NULL;
|
||||
- boolean invert;
|
||||
-
|
||||
- GET_TJINSTANCE(handle, -1)
|
||||
-
|
||||
- if (!filename || !buffer || width < 1 || pitch < 0 || height < 1 ||
|
||||
- pixelFormat < 0 || pixelFormat >= TJ_NUMPF)
|
||||
- THROW("Invalid argument");
|
||||
-
|
||||
- /* The instance handle passed to this function is used only for parameter
|
||||
- retrieval. Create a new temporary instance to avoid interfering with the
|
||||
- libjpeg state of the primary instance. */
|
||||
- if ((handle2 = tj3Init(TJINIT_DECOMPRESS)) == NULL)
|
||||
- return -1;
|
||||
- this2 = (tjinstance *)handle2;
|
||||
- dinfo = &this2->dinfo;
|
||||
-
|
||||
-#ifdef _MSC_VER
|
||||
- if (fopen_s(&file, filename, "wb") || file == NULL)
|
||||
-#else
|
||||
- if ((file = fopen(filename, "wb")) == NULL)
|
||||
-#endif
|
||||
- THROW_UNIX("Cannot open output file");
|
||||
-
|
||||
- if (setjmp(this2->jerr.setjmp_buffer)) {
|
||||
- /* If we get here, the JPEG code has signaled an error. */
|
||||
- retval = -1; goto bailout;
|
||||
- }
|
||||
-
|
||||
- this2->dinfo.out_color_space = pf2cs[pixelFormat];
|
||||
- dinfo->image_width = width; dinfo->image_height = height;
|
||||
- dinfo->global_state = DSTATE_READY;
|
||||
- dinfo->scale_num = dinfo->scale_denom = 1;
|
||||
- dinfo->data_precision = BITS_IN_JSAMPLE;
|
||||
-
|
||||
- ptr = strrchr(filename, '.');
|
||||
- if (ptr && !strcasecmp(ptr, ".bmp")) {
|
||||
- if ((dst = jinit_write_bmp(dinfo, FALSE, FALSE)) == NULL)
|
||||
- THROW("Could not initialize bitmap writer");
|
||||
- invert = !this->bottomUp;
|
||||
- dinfo->X_density = (UINT16)this->xDensity;
|
||||
- dinfo->Y_density = (UINT16)this->yDensity;
|
||||
- dinfo->density_unit = (UINT8)this->densityUnits;
|
||||
- } else {
|
||||
-#if BITS_IN_JSAMPLE == 8
|
||||
- if (this->precision >= 2 && this->precision <= BITS_IN_JSAMPLE)
|
||||
-#else
|
||||
- if (this->precision >= BITS_IN_JSAMPLE - 3 &&
|
||||
- this->precision <= BITS_IN_JSAMPLE)
|
||||
-#endif
|
||||
- dinfo->data_precision = this->precision;
|
||||
- if ((dst = _jinit_write_ppm(dinfo)) == NULL)
|
||||
- THROW("Could not initialize PPM writer");
|
||||
- invert = this->bottomUp;
|
||||
- }
|
||||
-
|
||||
- dinfo->mem->max_memory_to_use = (long)this->maxMemory * 1048576L;
|
||||
-
|
||||
- dst->output_file = file;
|
||||
- (*dst->start_output) (dinfo, dst);
|
||||
- (*dinfo->mem->realize_virt_arrays) ((j_common_ptr)dinfo);
|
||||
-
|
||||
- if (pitch == 0) pitch = width * tjPixelSize[pixelFormat];
|
||||
-
|
||||
- while (dinfo->output_scanline < dinfo->output_height) {
|
||||
- _JSAMPLE *rowptr;
|
||||
-
|
||||
- if (invert)
|
||||
- rowptr =
|
||||
- (_JSAMPLE *)&buffer[(height - dinfo->output_scanline - 1) * pitch];
|
||||
- else
|
||||
- rowptr = (_JSAMPLE *)&buffer[dinfo->output_scanline * pitch];
|
||||
- memcpy(dst->_buffer[0], rowptr,
|
||||
- width * tjPixelSize[pixelFormat] * sizeof(_JSAMPLE));
|
||||
- (*dst->put_pixel_rows) (dinfo, dst, 1);
|
||||
- dinfo->output_scanline++;
|
||||
- }
|
||||
-
|
||||
- (*dst->finish_output) (dinfo, dst);
|
||||
-
|
||||
-bailout:
|
||||
- tj3Destroy(handle2);
|
||||
- if (file) fclose(file);
|
||||
- return retval;
|
||||
-
|
||||
-#else /* BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED) */
|
||||
-
|
||||
- GET_TJINSTANCE(handle, -1)
|
||||
- THROW("16-bit data precision requires lossless JPEG,\n"
|
||||
- "which was disabled at build time.")
|
||||
-bailout:
|
||||
- return retval;
|
||||
-
|
||||
-#endif
|
||||
-}
|
||||
-
|
||||
-
|
||||
#undef _JSAMPLE
|
||||
#undef _JSAMPROW
|
||||
#undef _buffer
|
||||
diff --git a/thirdparty/libjpeg-turbo/src/turbojpeg.c b/thirdparty/libjpeg-turbo/src/turbojpeg.c
|
||||
index eec8e2a616..8ce446148a 100644
|
||||
--- a/thirdparty/libjpeg-turbo/src/turbojpeg.c
|
||||
+++ b/thirdparty/libjpeg-turbo/src/turbojpeg.c
|
||||
@@ -3095,48 +3095,3 @@ bailout:
|
||||
free(sizes);
|
||||
return retval;
|
||||
}
|
||||
-
|
||||
-
|
||||
-/*************************** Packed-Pixel Image I/O **************************/
|
||||
-
|
||||
-/* tj3LoadImage*() is implemented in turbojpeg-mp.c */
|
||||
-
|
||||
-/* TurboJPEG 2.0+ */
|
||||
-DLLEXPORT unsigned char *tjLoadImage(const char *filename, int *width,
|
||||
- int align, int *height,
|
||||
- int *pixelFormat, int flags)
|
||||
-{
|
||||
- tjhandle handle = NULL;
|
||||
- unsigned char *dstBuf = NULL;
|
||||
-
|
||||
- if ((handle = tj3Init(TJINIT_COMPRESS)) == NULL) return NULL;
|
||||
-
|
||||
- processFlags(handle, flags, COMPRESS);
|
||||
-
|
||||
- dstBuf = tj3LoadImage8(handle, filename, width, align, height, pixelFormat);
|
||||
-
|
||||
- tj3Destroy(handle);
|
||||
- return dstBuf;
|
||||
-}
|
||||
-
|
||||
-
|
||||
-/* tj3SaveImage*() is implemented in turbojpeg-mp.c */
|
||||
-
|
||||
-/* TurboJPEG 2.0+ */
|
||||
-DLLEXPORT int tjSaveImage(const char *filename, unsigned char *buffer,
|
||||
- int width, int pitch, int height, int pixelFormat,
|
||||
- int flags)
|
||||
-{
|
||||
- tjhandle handle = NULL;
|
||||
- int retval = -1;
|
||||
-
|
||||
- if ((handle = tj3Init(TJINIT_DECOMPRESS)) == NULL) return -1;
|
||||
-
|
||||
- processFlags(handle, flags, DECOMPRESS);
|
||||
-
|
||||
- retval = tj3SaveImage8(handle, filename, buffer, width, pitch, height,
|
||||
- pixelFormat);
|
||||
-
|
||||
- tj3Destroy(handle);
|
||||
- return retval;
|
||||
-}
|
||||
114
thirdparty/libjpeg-turbo/src/cderror.h
vendored
Normal file
114
thirdparty/libjpeg-turbo/src/cderror.h
vendored
Normal file
@@ -0,0 +1,114 @@
|
||||
/*
|
||||
* cderror.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* Modified 2009-2017 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2021, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file defines the error and message codes for the cjpeg/djpeg
|
||||
* applications. These strings are not needed as part of the JPEG library
|
||||
* proper.
|
||||
* Edit this file to add new codes, or to translate the message strings to
|
||||
* some other language.
|
||||
*/
|
||||
|
||||
/*
|
||||
* To define the enum list of message codes, include this file without
|
||||
* defining macro JMESSAGE. To create a message string table, include it
|
||||
* again with a suitable JMESSAGE definition (see jerror.c for an example).
|
||||
*/
|
||||
#ifndef JMESSAGE
|
||||
#ifndef CDERROR_H
|
||||
#define CDERROR_H
|
||||
/* First time through, define the enum list */
|
||||
#define JMAKE_ENUM_LIST
|
||||
#else
|
||||
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
|
||||
#define JMESSAGE(code, string)
|
||||
#endif /* CDERROR_H */
|
||||
#endif /* JMESSAGE */
|
||||
|
||||
#ifdef JMAKE_ENUM_LIST
|
||||
|
||||
typedef enum {
|
||||
|
||||
#define JMESSAGE(code, string) code,
|
||||
|
||||
#endif /* JMAKE_ENUM_LIST */
|
||||
|
||||
JMESSAGE(JMSG_FIRSTADDONCODE = 1000, NULL) /* Must be first entry! */
|
||||
|
||||
JMESSAGE(JERR_BMP_BADCMAP, "Unsupported BMP colormap format")
|
||||
JMESSAGE(JERR_BMP_BADDEPTH, "Only 8-, 24-, and 32-bit BMP files are supported")
|
||||
JMESSAGE(JERR_BMP_BADHEADER, "Invalid BMP file: bad header length")
|
||||
JMESSAGE(JERR_BMP_BADPLANES, "Invalid BMP file: biPlanes not equal to 1")
|
||||
JMESSAGE(JERR_BMP_COLORSPACE, "BMP output must be grayscale or RGB")
|
||||
JMESSAGE(JERR_BMP_COMPRESSED, "Sorry, compressed BMPs not yet supported")
|
||||
JMESSAGE(JERR_BMP_EMPTY, "Empty BMP image")
|
||||
JMESSAGE(JERR_BMP_NOT, "Not a BMP file - does not start with BM")
|
||||
JMESSAGE(JERR_BMP_OUTOFRANGE, "Numeric value out of range in BMP file")
|
||||
JMESSAGE(JTRC_BMP, "%ux%u %d-bit BMP image")
|
||||
JMESSAGE(JTRC_BMP_MAPPED, "%ux%u 8-bit colormapped BMP image")
|
||||
JMESSAGE(JTRC_BMP_OS2, "%ux%u %d-bit OS2 BMP image")
|
||||
JMESSAGE(JTRC_BMP_OS2_MAPPED, "%ux%u 8-bit colormapped OS2 BMP image")
|
||||
|
||||
JMESSAGE(JERR_GIF_BUG, "GIF output got confused")
|
||||
JMESSAGE(JERR_GIF_CODESIZE, "Bogus GIF codesize %d")
|
||||
JMESSAGE(JERR_GIF_COLORSPACE, "GIF output must be grayscale or RGB")
|
||||
JMESSAGE(JERR_GIF_EMPTY, "Empty GIF image")
|
||||
JMESSAGE(JERR_GIF_IMAGENOTFOUND, "Too few images in GIF file")
|
||||
JMESSAGE(JERR_GIF_NOT, "Not a GIF file")
|
||||
JMESSAGE(JTRC_GIF, "%ux%ux%d GIF image")
|
||||
JMESSAGE(JTRC_GIF_BADVERSION,
|
||||
"Warning: unexpected GIF version number '%c%c%c'")
|
||||
JMESSAGE(JTRC_GIF_EXTENSION, "Ignoring GIF extension block of type 0x%02x")
|
||||
JMESSAGE(JTRC_GIF_NONSQUARE, "Caution: nonsquare pixels in input")
|
||||
JMESSAGE(JWRN_GIF_BADDATA, "Corrupt data in GIF file")
|
||||
JMESSAGE(JWRN_GIF_CHAR, "Bogus char 0x%02x in GIF file, ignoring")
|
||||
JMESSAGE(JWRN_GIF_ENDCODE, "Premature end of GIF image")
|
||||
JMESSAGE(JWRN_GIF_NOMOREDATA, "Ran out of GIF bits")
|
||||
|
||||
JMESSAGE(JERR_PPM_COLORSPACE, "PPM output must be grayscale or RGB")
|
||||
JMESSAGE(JERR_PPM_NONNUMERIC, "Nonnumeric data in PPM file")
|
||||
JMESSAGE(JERR_PPM_NOT, "Not a PPM/PGM file")
|
||||
JMESSAGE(JERR_PPM_OUTOFRANGE, "Numeric value out of range in PPM file")
|
||||
JMESSAGE(JTRC_PGM, "%ux%u PGM image (maximum color value = %u)")
|
||||
JMESSAGE(JTRC_PGM_TEXT, "%ux%u text PGM image (maximum color value = %u)")
|
||||
JMESSAGE(JTRC_PPM, "%ux%u PPM image (maximum color value = %u)")
|
||||
JMESSAGE(JTRC_PPM_TEXT, "%ux%u text PPM image (maximum color value = %u)")
|
||||
|
||||
JMESSAGE(JERR_TGA_BADCMAP, "Unsupported Targa colormap format")
|
||||
JMESSAGE(JERR_TGA_BADPARMS, "Invalid or unsupported Targa file")
|
||||
JMESSAGE(JERR_TGA_COLORSPACE, "Targa output must be grayscale or RGB")
|
||||
JMESSAGE(JTRC_TGA, "%ux%u RGB Targa image")
|
||||
JMESSAGE(JTRC_TGA_GRAY, "%ux%u grayscale Targa image")
|
||||
JMESSAGE(JTRC_TGA_MAPPED, "%ux%u colormapped Targa image")
|
||||
JMESSAGE(JERR_TGA_NOTCOMP, "Targa support was not compiled")
|
||||
|
||||
JMESSAGE(JERR_BAD_CMAP_FILE,
|
||||
"Color map file is invalid or of unsupported format")
|
||||
JMESSAGE(JERR_TOO_MANY_COLORS,
|
||||
"Output file format cannot handle %d colormap entries")
|
||||
JMESSAGE(JERR_UNGETC_FAILED, "ungetc failed")
|
||||
#ifdef TARGA_SUPPORTED
|
||||
JMESSAGE(JERR_UNKNOWN_FORMAT,
|
||||
"Unrecognized input file format --- perhaps you need -targa")
|
||||
#else
|
||||
JMESSAGE(JERR_UNKNOWN_FORMAT, "Unrecognized input file format")
|
||||
#endif
|
||||
JMESSAGE(JERR_UNSUPPORTED_FORMAT, "Unsupported output file format")
|
||||
|
||||
#ifdef JMAKE_ENUM_LIST
|
||||
|
||||
JMSG_LASTADDONCODE
|
||||
} ADDON_MESSAGE_CODE;
|
||||
|
||||
#undef JMAKE_ENUM_LIST
|
||||
#endif /* JMAKE_ENUM_LIST */
|
||||
|
||||
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
|
||||
#undef JMESSAGE
|
||||
175
thirdparty/libjpeg-turbo/src/cdjpeg.h
vendored
Normal file
175
thirdparty/libjpeg-turbo/src/cdjpeg.h
vendored
Normal file
@@ -0,0 +1,175 @@
|
||||
/*
|
||||
* cdjpeg.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* Modified 2019 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2017, 2019, 2021-2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains common declarations for the sample applications
|
||||
* cjpeg and djpeg. It is NOT used by the core JPEG library.
|
||||
*/
|
||||
|
||||
#define JPEG_CJPEG_DJPEG /* define proper options in jconfig.h */
|
||||
#define JPEG_INTERNAL_OPTIONS /* cjpeg.c,djpeg.c need to see xxx_SUPPORTED */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h" /* get library error codes too */
|
||||
#include "cderror.h" /* get application-specific error codes */
|
||||
|
||||
|
||||
/*
|
||||
* Object interface for cjpeg's source file decoding modules
|
||||
*/
|
||||
|
||||
typedef struct cjpeg_source_struct *cjpeg_source_ptr;
|
||||
|
||||
struct cjpeg_source_struct {
|
||||
void (*start_input) (j_compress_ptr cinfo, cjpeg_source_ptr sinfo);
|
||||
JDIMENSION (*get_pixel_rows) (j_compress_ptr cinfo, cjpeg_source_ptr sinfo);
|
||||
void (*finish_input) (j_compress_ptr cinfo, cjpeg_source_ptr sinfo);
|
||||
|
||||
FILE *input_file;
|
||||
|
||||
JSAMPARRAY buffer;
|
||||
J12SAMPARRAY buffer12;
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
J16SAMPARRAY buffer16;
|
||||
#endif
|
||||
JDIMENSION buffer_height;
|
||||
JDIMENSION max_pixels;
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Object interface for djpeg's output file encoding modules
|
||||
*/
|
||||
|
||||
typedef struct djpeg_dest_struct *djpeg_dest_ptr;
|
||||
|
||||
struct djpeg_dest_struct {
|
||||
/* start_output is called after jpeg_start_decompress finishes.
|
||||
* The color map will be ready at this time, if one is needed.
|
||||
*/
|
||||
void (*start_output) (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo);
|
||||
/* Emit the specified number of pixel rows from the buffer. */
|
||||
void (*put_pixel_rows) (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
|
||||
JDIMENSION rows_supplied);
|
||||
/* Finish up at the end of the image. */
|
||||
void (*finish_output) (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo);
|
||||
/* Re-calculate buffer dimensions based on output dimensions (for use with
|
||||
partial image decompression.) If this is NULL, then the output format
|
||||
does not support partial image decompression (BMP, in particular, cannot
|
||||
support partial decompression because it uses an inversion buffer to write
|
||||
the image in bottom-up order.) */
|
||||
void (*calc_buffer_dimensions) (j_decompress_ptr cinfo,
|
||||
djpeg_dest_ptr dinfo);
|
||||
|
||||
|
||||
/* Target file spec; filled in by djpeg.c after object is created. */
|
||||
FILE *output_file;
|
||||
|
||||
/* Output pixel-row buffer. Created by module init or start_output.
|
||||
* Width is cinfo->output_width * cinfo->output_components;
|
||||
* height is buffer_height.
|
||||
*/
|
||||
JSAMPARRAY buffer;
|
||||
J12SAMPARRAY buffer12;
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
J16SAMPARRAY buffer16;
|
||||
#endif
|
||||
JDIMENSION buffer_height;
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* cjpeg/djpeg may need to perform extra passes to convert to or from
|
||||
* the source/destination file format. The JPEG library does not know
|
||||
* about these passes, but we'd like them to be counted by the progress
|
||||
* monitor. We use an expanded progress monitor object to hold the
|
||||
* additional pass count.
|
||||
*/
|
||||
|
||||
struct cdjpeg_progress_mgr {
|
||||
struct jpeg_progress_mgr pub; /* fields known to JPEG library */
|
||||
int completed_extra_passes; /* extra passes completed */
|
||||
int total_extra_passes; /* total extra */
|
||||
JDIMENSION max_scans; /* abort if the number of scans exceeds this
|
||||
value and the value is non-zero */
|
||||
boolean report; /* whether or not to report progress */
|
||||
/* last printed percentage stored here to avoid multiple printouts */
|
||||
int percent_done;
|
||||
};
|
||||
|
||||
typedef struct cdjpeg_progress_mgr *cd_progress_ptr;
|
||||
|
||||
|
||||
/* Module selection routines for I/O modules. */
|
||||
|
||||
EXTERN(cjpeg_source_ptr) jinit_read_bmp(j_compress_ptr cinfo,
|
||||
boolean use_inversion_array);
|
||||
EXTERN(djpeg_dest_ptr) jinit_write_bmp(j_decompress_ptr cinfo, boolean is_os2,
|
||||
boolean use_inversion_array);
|
||||
EXTERN(cjpeg_source_ptr) jinit_read_gif(j_compress_ptr cinfo);
|
||||
EXTERN(djpeg_dest_ptr) jinit_write_gif(j_decompress_ptr cinfo, boolean is_lzw);
|
||||
EXTERN(djpeg_dest_ptr) j12init_write_gif(j_decompress_ptr cinfo,
|
||||
boolean is_lzw);
|
||||
EXTERN(cjpeg_source_ptr) jinit_read_ppm(j_compress_ptr cinfo);
|
||||
EXTERN(cjpeg_source_ptr) j12init_read_ppm(j_compress_ptr cinfo);
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
EXTERN(cjpeg_source_ptr) j16init_read_ppm(j_compress_ptr cinfo);
|
||||
#endif
|
||||
EXTERN(djpeg_dest_ptr) jinit_write_ppm(j_decompress_ptr cinfo);
|
||||
EXTERN(djpeg_dest_ptr) j12init_write_ppm(j_decompress_ptr cinfo);
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
EXTERN(djpeg_dest_ptr) j16init_write_ppm(j_decompress_ptr cinfo);
|
||||
#endif
|
||||
EXTERN(cjpeg_source_ptr) jinit_read_targa(j_compress_ptr cinfo);
|
||||
EXTERN(djpeg_dest_ptr) jinit_write_targa(j_decompress_ptr cinfo);
|
||||
|
||||
/* cjpeg support routines (in rdswitch.c) */
|
||||
|
||||
EXTERN(boolean) read_quant_tables(j_compress_ptr cinfo, char *filename,
|
||||
boolean force_baseline);
|
||||
EXTERN(boolean) read_scan_script(j_compress_ptr cinfo, char *filename);
|
||||
EXTERN(boolean) set_quality_ratings(j_compress_ptr cinfo, char *arg,
|
||||
boolean force_baseline);
|
||||
EXTERN(boolean) set_quant_slots(j_compress_ptr cinfo, char *arg);
|
||||
EXTERN(boolean) set_sample_factors(j_compress_ptr cinfo, char *arg);
|
||||
|
||||
/* djpeg support routines (in rdcolmap.c) */
|
||||
|
||||
EXTERN(void) read_color_map(j_decompress_ptr cinfo, FILE *infile);
|
||||
EXTERN(void) read_color_map_12(j_decompress_ptr cinfo, FILE *infile);
|
||||
|
||||
/* common support routines (in cdjpeg.c) */
|
||||
|
||||
EXTERN(void) start_progress_monitor(j_common_ptr cinfo,
|
||||
cd_progress_ptr progress);
|
||||
EXTERN(void) end_progress_monitor(j_common_ptr cinfo);
|
||||
EXTERN(boolean) keymatch(char *arg, const char *keyword, int minchars);
|
||||
EXTERN(FILE *) read_stdin(void);
|
||||
EXTERN(FILE *) write_stdout(void);
|
||||
|
||||
/* miscellaneous useful macros */
|
||||
|
||||
#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
|
||||
#define READ_BINARY "r"
|
||||
#define WRITE_BINARY "w"
|
||||
#else
|
||||
#define READ_BINARY "rb"
|
||||
#define WRITE_BINARY "wb"
|
||||
#endif
|
||||
|
||||
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
|
||||
#define EXIT_FAILURE 1
|
||||
#endif
|
||||
#ifndef EXIT_SUCCESS
|
||||
#define EXIT_SUCCESS 0
|
||||
#endif
|
||||
#ifndef EXIT_WARNING
|
||||
#define EXIT_WARNING 2
|
||||
#endif
|
||||
61
thirdparty/libjpeg-turbo/src/cmyk.h
vendored
Normal file
61
thirdparty/libjpeg-turbo/src/cmyk.h
vendored
Normal file
@@ -0,0 +1,61 @@
|
||||
/*
|
||||
* cmyk.h
|
||||
*
|
||||
* Copyright (C) 2017-2018, 2022, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains convenience functions for performing quick & dirty
|
||||
* CMYK<->RGB conversion. This algorithm is suitable for testing purposes
|
||||
* only. Properly converting between CMYK and RGB requires a color management
|
||||
* system.
|
||||
*/
|
||||
|
||||
#ifndef CMYK_H
|
||||
#define CMYK_H
|
||||
|
||||
#include <jinclude.h>
|
||||
#define JPEG_INTERNALS
|
||||
#include <jpeglib.h>
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
/* Fully reversible */
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
rgb_to_cmyk(int maxval, _JSAMPLE r, _JSAMPLE g, _JSAMPLE b,
|
||||
_JSAMPLE *c, _JSAMPLE *m, _JSAMPLE *y, _JSAMPLE *k)
|
||||
{
|
||||
double ctmp = 1.0 - ((double)r / (double)maxval);
|
||||
double mtmp = 1.0 - ((double)g / (double)maxval);
|
||||
double ytmp = 1.0 - ((double)b / (double)maxval);
|
||||
double ktmp = MIN(MIN(ctmp, mtmp), ytmp);
|
||||
|
||||
if (ktmp == 1.0) ctmp = mtmp = ytmp = 0.0;
|
||||
else {
|
||||
ctmp = (ctmp - ktmp) / (1.0 - ktmp);
|
||||
mtmp = (mtmp - ktmp) / (1.0 - ktmp);
|
||||
ytmp = (ytmp - ktmp) / (1.0 - ktmp);
|
||||
}
|
||||
*c = (_JSAMPLE)((double)maxval - ctmp * (double)maxval + 0.5);
|
||||
*m = (_JSAMPLE)((double)maxval - mtmp * (double)maxval + 0.5);
|
||||
*y = (_JSAMPLE)((double)maxval - ytmp * (double)maxval + 0.5);
|
||||
*k = (_JSAMPLE)((double)maxval - ktmp * (double)maxval + 0.5);
|
||||
}
|
||||
|
||||
|
||||
/* Fully reversible only for C/M/Y/K values generated with rgb_to_cmyk() */
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
cmyk_to_rgb(int maxval, _JSAMPLE c, _JSAMPLE m, _JSAMPLE y, _JSAMPLE k,
|
||||
_JSAMPLE *r, _JSAMPLE *g, _JSAMPLE *b)
|
||||
{
|
||||
*r = (_JSAMPLE)((double)c * (double)k / (double)maxval + 0.5);
|
||||
*g = (_JSAMPLE)((double)m * (double)k / (double)maxval + 0.5);
|
||||
*b = (_JSAMPLE)((double)y * (double)k / (double)maxval + 0.5);
|
||||
}
|
||||
|
||||
|
||||
#endif /* CMYK_H */
|
||||
157
thirdparty/libjpeg-turbo/src/jaricom.c
vendored
Normal file
157
thirdparty/libjpeg-turbo/src/jaricom.c
vendored
Normal file
@@ -0,0 +1,157 @@
|
||||
/*
|
||||
* jaricom.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Developed 1997-2009 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2015, 2018, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains probability estimation tables for common use in
|
||||
* arithmetic entropy encoding and decoding routines.
|
||||
*
|
||||
* This data represents Table D.2 in
|
||||
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 and Table 24 in
|
||||
* Recommendation ITU-T T.82 (1993) | ISO/IEC 11544:1993.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
/* The following #define specifies the packing of the four components
|
||||
* into the compact JLONG representation.
|
||||
* Note that this formula must match the actual arithmetic encoder
|
||||
* and decoder implementation. The implementation has to be changed
|
||||
* if this formula is changed.
|
||||
* The current organization is leaned on Markus Kuhn's JBIG
|
||||
* implementation (jbig_tab.c).
|
||||
*/
|
||||
|
||||
#define V(i, a, b, c, d) \
|
||||
(((JLONG)a << 16) | ((JLONG)c << 8) | ((JLONG)d << 7) | b)
|
||||
|
||||
const JLONG jpeg_aritab[113 + 1] = {
|
||||
/*
|
||||
* Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS
|
||||
*/
|
||||
V( 0, 0x5a1d, 1, 1, 1 ),
|
||||
V( 1, 0x2586, 14, 2, 0 ),
|
||||
V( 2, 0x1114, 16, 3, 0 ),
|
||||
V( 3, 0x080b, 18, 4, 0 ),
|
||||
V( 4, 0x03d8, 20, 5, 0 ),
|
||||
V( 5, 0x01da, 23, 6, 0 ),
|
||||
V( 6, 0x00e5, 25, 7, 0 ),
|
||||
V( 7, 0x006f, 28, 8, 0 ),
|
||||
V( 8, 0x0036, 30, 9, 0 ),
|
||||
V( 9, 0x001a, 33, 10, 0 ),
|
||||
V( 10, 0x000d, 35, 11, 0 ),
|
||||
V( 11, 0x0006, 9, 12, 0 ),
|
||||
V( 12, 0x0003, 10, 13, 0 ),
|
||||
V( 13, 0x0001, 12, 13, 0 ),
|
||||
V( 14, 0x5a7f, 15, 15, 1 ),
|
||||
V( 15, 0x3f25, 36, 16, 0 ),
|
||||
V( 16, 0x2cf2, 38, 17, 0 ),
|
||||
V( 17, 0x207c, 39, 18, 0 ),
|
||||
V( 18, 0x17b9, 40, 19, 0 ),
|
||||
V( 19, 0x1182, 42, 20, 0 ),
|
||||
V( 20, 0x0cef, 43, 21, 0 ),
|
||||
V( 21, 0x09a1, 45, 22, 0 ),
|
||||
V( 22, 0x072f, 46, 23, 0 ),
|
||||
V( 23, 0x055c, 48, 24, 0 ),
|
||||
V( 24, 0x0406, 49, 25, 0 ),
|
||||
V( 25, 0x0303, 51, 26, 0 ),
|
||||
V( 26, 0x0240, 52, 27, 0 ),
|
||||
V( 27, 0x01b1, 54, 28, 0 ),
|
||||
V( 28, 0x0144, 56, 29, 0 ),
|
||||
V( 29, 0x00f5, 57, 30, 0 ),
|
||||
V( 30, 0x00b7, 59, 31, 0 ),
|
||||
V( 31, 0x008a, 60, 32, 0 ),
|
||||
V( 32, 0x0068, 62, 33, 0 ),
|
||||
V( 33, 0x004e, 63, 34, 0 ),
|
||||
V( 34, 0x003b, 32, 35, 0 ),
|
||||
V( 35, 0x002c, 33, 9, 0 ),
|
||||
V( 36, 0x5ae1, 37, 37, 1 ),
|
||||
V( 37, 0x484c, 64, 38, 0 ),
|
||||
V( 38, 0x3a0d, 65, 39, 0 ),
|
||||
V( 39, 0x2ef1, 67, 40, 0 ),
|
||||
V( 40, 0x261f, 68, 41, 0 ),
|
||||
V( 41, 0x1f33, 69, 42, 0 ),
|
||||
V( 42, 0x19a8, 70, 43, 0 ),
|
||||
V( 43, 0x1518, 72, 44, 0 ),
|
||||
V( 44, 0x1177, 73, 45, 0 ),
|
||||
V( 45, 0x0e74, 74, 46, 0 ),
|
||||
V( 46, 0x0bfb, 75, 47, 0 ),
|
||||
V( 47, 0x09f8, 77, 48, 0 ),
|
||||
V( 48, 0x0861, 78, 49, 0 ),
|
||||
V( 49, 0x0706, 79, 50, 0 ),
|
||||
V( 50, 0x05cd, 48, 51, 0 ),
|
||||
V( 51, 0x04de, 50, 52, 0 ),
|
||||
V( 52, 0x040f, 50, 53, 0 ),
|
||||
V( 53, 0x0363, 51, 54, 0 ),
|
||||
V( 54, 0x02d4, 52, 55, 0 ),
|
||||
V( 55, 0x025c, 53, 56, 0 ),
|
||||
V( 56, 0x01f8, 54, 57, 0 ),
|
||||
V( 57, 0x01a4, 55, 58, 0 ),
|
||||
V( 58, 0x0160, 56, 59, 0 ),
|
||||
V( 59, 0x0125, 57, 60, 0 ),
|
||||
V( 60, 0x00f6, 58, 61, 0 ),
|
||||
V( 61, 0x00cb, 59, 62, 0 ),
|
||||
V( 62, 0x00ab, 61, 63, 0 ),
|
||||
V( 63, 0x008f, 61, 32, 0 ),
|
||||
V( 64, 0x5b12, 65, 65, 1 ),
|
||||
V( 65, 0x4d04, 80, 66, 0 ),
|
||||
V( 66, 0x412c, 81, 67, 0 ),
|
||||
V( 67, 0x37d8, 82, 68, 0 ),
|
||||
V( 68, 0x2fe8, 83, 69, 0 ),
|
||||
V( 69, 0x293c, 84, 70, 0 ),
|
||||
V( 70, 0x2379, 86, 71, 0 ),
|
||||
V( 71, 0x1edf, 87, 72, 0 ),
|
||||
V( 72, 0x1aa9, 87, 73, 0 ),
|
||||
V( 73, 0x174e, 72, 74, 0 ),
|
||||
V( 74, 0x1424, 72, 75, 0 ),
|
||||
V( 75, 0x119c, 74, 76, 0 ),
|
||||
V( 76, 0x0f6b, 74, 77, 0 ),
|
||||
V( 77, 0x0d51, 75, 78, 0 ),
|
||||
V( 78, 0x0bb6, 77, 79, 0 ),
|
||||
V( 79, 0x0a40, 77, 48, 0 ),
|
||||
V( 80, 0x5832, 80, 81, 1 ),
|
||||
V( 81, 0x4d1c, 88, 82, 0 ),
|
||||
V( 82, 0x438e, 89, 83, 0 ),
|
||||
V( 83, 0x3bdd, 90, 84, 0 ),
|
||||
V( 84, 0x34ee, 91, 85, 0 ),
|
||||
V( 85, 0x2eae, 92, 86, 0 ),
|
||||
V( 86, 0x299a, 93, 87, 0 ),
|
||||
V( 87, 0x2516, 86, 71, 0 ),
|
||||
V( 88, 0x5570, 88, 89, 1 ),
|
||||
V( 89, 0x4ca9, 95, 90, 0 ),
|
||||
V( 90, 0x44d9, 96, 91, 0 ),
|
||||
V( 91, 0x3e22, 97, 92, 0 ),
|
||||
V( 92, 0x3824, 99, 93, 0 ),
|
||||
V( 93, 0x32b4, 99, 94, 0 ),
|
||||
V( 94, 0x2e17, 93, 86, 0 ),
|
||||
V( 95, 0x56a8, 95, 96, 1 ),
|
||||
V( 96, 0x4f46, 101, 97, 0 ),
|
||||
V( 97, 0x47e5, 102, 98, 0 ),
|
||||
V( 98, 0x41cf, 103, 99, 0 ),
|
||||
V( 99, 0x3c3d, 104, 100, 0 ),
|
||||
V( 100, 0x375e, 99, 93, 0 ),
|
||||
V( 101, 0x5231, 105, 102, 0 ),
|
||||
V( 102, 0x4c0f, 106, 103, 0 ),
|
||||
V( 103, 0x4639, 107, 104, 0 ),
|
||||
V( 104, 0x415e, 103, 99, 0 ),
|
||||
V( 105, 0x5627, 105, 106, 1 ),
|
||||
V( 106, 0x50e7, 108, 107, 0 ),
|
||||
V( 107, 0x4b85, 109, 103, 0 ),
|
||||
V( 108, 0x5597, 110, 109, 0 ),
|
||||
V( 109, 0x504f, 111, 107, 0 ),
|
||||
V( 110, 0x5a10, 110, 111, 1 ),
|
||||
V( 111, 0x5522, 112, 109, 0 ),
|
||||
V( 112, 0x59eb, 112, 111, 1 ),
|
||||
/*
|
||||
* This last entry is used for fixed probability estimate of 0.5
|
||||
* as recommended in Section 10.3 Table 5 of ITU-T Rec. T.851.
|
||||
*/
|
||||
V( 113, 0x5a1d, 113, 113, 0 )
|
||||
};
|
||||
318
thirdparty/libjpeg-turbo/src/jcapimin.c
vendored
Normal file
318
thirdparty/libjpeg-turbo/src/jcapimin.c
vendored
Normal file
@@ -0,0 +1,318 @@
|
||||
/*
|
||||
* jcapimin.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* Modified 2003-2010 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2022, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains application interface code for the compression half
|
||||
* of the JPEG library. These are the "minimum" API routines that may be
|
||||
* needed in either the normal full-compression case or the transcoding-only
|
||||
* case.
|
||||
*
|
||||
* Most of the routines intended to be called directly by an application
|
||||
* are in this file or in jcapistd.c. But also see jcparam.c for
|
||||
* parameter-setup helper routines, jcomapi.c for routines shared by
|
||||
* compression and decompression, and jctrans.c for the transcoding case.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jcmaster.h"
|
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG compression object.
|
||||
* The error manager must already be set up (in case memory manager fails).
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_CreateCompress(j_compress_ptr cinfo, int version, size_t structsize)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Guard against version mismatches between library and caller. */
|
||||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
|
||||
if (version != JPEG_LIB_VERSION)
|
||||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
|
||||
if (structsize != sizeof(struct jpeg_compress_struct))
|
||||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
|
||||
(int)sizeof(struct jpeg_compress_struct), (int)structsize);
|
||||
|
||||
/* For debugging purposes, we zero the whole master structure.
|
||||
* But the application has already set the err pointer, and may have set
|
||||
* client_data, so we have to save and restore those fields.
|
||||
* Note: if application hasn't set client_data, tools like Purify may
|
||||
* complain here.
|
||||
*/
|
||||
{
|
||||
struct jpeg_error_mgr *err = cinfo->err;
|
||||
void *client_data = cinfo->client_data; /* ignore Purify complaint here */
|
||||
memset(cinfo, 0, sizeof(struct jpeg_compress_struct));
|
||||
cinfo->err = err;
|
||||
cinfo->client_data = client_data;
|
||||
}
|
||||
cinfo->is_decompressor = FALSE;
|
||||
|
||||
/* Initialize a memory manager instance for this object */
|
||||
jinit_memory_mgr((j_common_ptr)cinfo);
|
||||
|
||||
/* Zero out pointers to permanent structures. */
|
||||
cinfo->progress = NULL;
|
||||
cinfo->dest = NULL;
|
||||
|
||||
cinfo->comp_info = NULL;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
cinfo->q_scale_factor[i] = 100;
|
||||
#endif
|
||||
}
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||
}
|
||||
|
||||
#if JPEG_LIB_VERSION >= 80
|
||||
/* Must do it here for emit_dqt in case jpeg_write_tables is used */
|
||||
cinfo->block_size = DCTSIZE;
|
||||
cinfo->natural_order = jpeg_natural_order;
|
||||
cinfo->lim_Se = DCTSIZE2 - 1;
|
||||
#endif
|
||||
|
||||
cinfo->script_space = NULL;
|
||||
|
||||
cinfo->input_gamma = 1.0; /* in case application forgets */
|
||||
|
||||
cinfo->data_precision = BITS_IN_JSAMPLE;
|
||||
|
||||
/* OK, I'm ready */
|
||||
cinfo->global_state = CSTATE_START;
|
||||
|
||||
/* The master struct is used to store extension parameters, so we allocate it
|
||||
* here.
|
||||
*/
|
||||
cinfo->master = (struct jpeg_comp_master *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT,
|
||||
sizeof(my_comp_master));
|
||||
memset(cinfo->master, 0, sizeof(my_comp_master));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG compression object
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_destroy_compress(j_compress_ptr cinfo)
|
||||
{
|
||||
jpeg_destroy((j_common_ptr)cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression operation,
|
||||
* but don't destroy the object itself.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_abort_compress(j_compress_ptr cinfo)
|
||||
{
|
||||
jpeg_abort((j_common_ptr)cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Forcibly suppress or un-suppress all quantization and Huffman tables.
|
||||
* Marks all currently defined tables as already written (if suppress)
|
||||
* or not written (if !suppress). This will control whether they get emitted
|
||||
* by a subsequent jpeg_start_compress call.
|
||||
*
|
||||
* This routine is exported for use by applications that want to produce
|
||||
* abbreviated JPEG datastreams. It logically belongs in jcparam.c, but
|
||||
* since it is called by jpeg_start_compress, we put it here --- otherwise
|
||||
* jcparam.o would be linked whether the application used it or not.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_suppress_tables(j_compress_ptr cinfo, boolean suppress)
|
||||
{
|
||||
int i;
|
||||
JQUANT_TBL *qtbl;
|
||||
JHUFF_TBL *htbl;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
|
||||
qtbl->sent_table = suppress;
|
||||
}
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
|
||||
htbl->sent_table = suppress;
|
||||
if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
|
||||
htbl->sent_table = suppress;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG compression.
|
||||
*
|
||||
* If a multipass operating mode was selected, this may do a great deal of
|
||||
* work including most of the actual output.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_finish_compress(j_compress_ptr cinfo)
|
||||
{
|
||||
JDIMENSION iMCU_row;
|
||||
|
||||
if (cinfo->global_state == CSTATE_SCANNING ||
|
||||
cinfo->global_state == CSTATE_RAW_OK) {
|
||||
/* Terminate first pass */
|
||||
if (cinfo->next_scanline < cinfo->image_height)
|
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
|
||||
(*cinfo->master->finish_pass) (cinfo);
|
||||
} else if (cinfo->global_state != CSTATE_WRCOEFS)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Perform any remaining passes */
|
||||
while (!cinfo->master->is_last_pass) {
|
||||
(*cinfo->master->prepare_for_pass) (cinfo);
|
||||
for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long)iMCU_row;
|
||||
cinfo->progress->pass_limit = (long)cinfo->total_iMCU_rows;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo);
|
||||
}
|
||||
/* We bypass the main controller and invoke coef controller directly;
|
||||
* all work is being done from the coefficient buffer.
|
||||
*/
|
||||
if (cinfo->data_precision <= 8) {
|
||||
if (!(*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE)NULL))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
} else if (cinfo->data_precision <= 12) {
|
||||
if (!(*cinfo->coef->compress_data_12) (cinfo, (J12SAMPIMAGE)NULL))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
} else {
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (!(*cinfo->coef->compress_data_16) (cinfo, (J16SAMPIMAGE)NULL))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
#else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
(*cinfo->master->finish_pass) (cinfo);
|
||||
}
|
||||
/* Write EOI, do final cleanup */
|
||||
(*cinfo->marker->write_file_trailer) (cinfo);
|
||||
(*cinfo->dest->term_destination) (cinfo);
|
||||
/* We can use jpeg_abort to release memory and reset global_state */
|
||||
jpeg_abort((j_common_ptr)cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write a special marker.
|
||||
* This is only recommended for writing COM or APPn markers.
|
||||
* Must be called after jpeg_start_compress() and before
|
||||
* first call to jpeg_write_scanlines() or jpeg_write_raw_data().
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_marker(j_compress_ptr cinfo, int marker, const JOCTET *dataptr,
|
||||
unsigned int datalen)
|
||||
{
|
||||
void (*write_marker_byte) (j_compress_ptr info, int val);
|
||||
|
||||
if (cinfo->next_scanline != 0 ||
|
||||
(cinfo->global_state != CSTATE_SCANNING &&
|
||||
cinfo->global_state != CSTATE_RAW_OK &&
|
||||
cinfo->global_state != CSTATE_WRCOEFS))
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
|
||||
write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
|
||||
while (datalen--) {
|
||||
(*write_marker_byte) (cinfo, *dataptr);
|
||||
dataptr++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Same, but piecemeal. */
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_m_header(j_compress_ptr cinfo, int marker, unsigned int datalen)
|
||||
{
|
||||
if (cinfo->next_scanline != 0 ||
|
||||
(cinfo->global_state != CSTATE_SCANNING &&
|
||||
cinfo->global_state != CSTATE_RAW_OK &&
|
||||
cinfo->global_state != CSTATE_WRCOEFS))
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_m_byte(j_compress_ptr cinfo, int val)
|
||||
{
|
||||
(*cinfo->marker->write_marker_byte) (cinfo, val);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Alternate compression function: just write an abbreviated table file.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
*
|
||||
* To produce a pair of files containing abbreviated tables and abbreviated
|
||||
* image data, one would proceed as follows:
|
||||
*
|
||||
* initialize JPEG object
|
||||
* set JPEG parameters
|
||||
* set destination to table file
|
||||
* jpeg_write_tables(cinfo);
|
||||
* set destination to image file
|
||||
* jpeg_start_compress(cinfo, FALSE);
|
||||
* write data...
|
||||
* jpeg_finish_compress(cinfo);
|
||||
*
|
||||
* jpeg_write_tables has the side effect of marking all tables written
|
||||
* (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress
|
||||
* will not re-emit the tables unless it is passed write_all_tables=TRUE.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_tables(j_compress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr)cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Initialize the marker writer ... bit of a crock to do it here. */
|
||||
jinit_marker_writer(cinfo);
|
||||
/* Write them tables! */
|
||||
(*cinfo->marker->write_tables_only) (cinfo);
|
||||
/* And clean up. */
|
||||
(*cinfo->dest->term_destination) (cinfo);
|
||||
/*
|
||||
* In library releases up through v6a, we called jpeg_abort() here to free
|
||||
* any working memory allocated by the destination manager and marker
|
||||
* writer. Some applications had a problem with that: they allocated space
|
||||
* of their own from the library memory manager, and didn't want it to go
|
||||
* away during write_tables. So now we do nothing. This will cause a
|
||||
* memory leak if an app calls write_tables repeatedly without doing a full
|
||||
* compression cycle or otherwise resetting the JPEG object. However, that
|
||||
* seems less bad than unexpectedly freeing memory in the normal case.
|
||||
* An app that prefers the old behavior can call jpeg_abort for itself after
|
||||
* each call to jpeg_write_tables().
|
||||
*/
|
||||
}
|
||||
200
thirdparty/libjpeg-turbo/src/jcapistd.c
vendored
Normal file
200
thirdparty/libjpeg-turbo/src/jcapistd.c
vendored
Normal file
@@ -0,0 +1,200 @@
|
||||
/*
|
||||
* jcapistd.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2022, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains application interface code for the compression half
|
||||
* of the JPEG library. These are the "standard" API routines that are
|
||||
* used in the normal full-compression case. They are not used by a
|
||||
* transcoding-only application. Note that if an application links in
|
||||
* jpeg_start_compress, it will end up linking in the entire compressor.
|
||||
* We thus must separate this file from jcapimin.c to avoid linking the
|
||||
* whole compression library into a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
|
||||
/*
|
||||
* Compression initialization.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
*
|
||||
* We require a write_all_tables parameter as a failsafe check when writing
|
||||
* multiple datastreams from the same compression object. Since prior runs
|
||||
* will have left all the tables marked sent_table=TRUE, a subsequent run
|
||||
* would emit an abbreviated stream (no tables) by default. This may be what
|
||||
* is wanted, but for safety's sake it should not be the default behavior:
|
||||
* programmers should have to make a deliberate choice to emit abbreviated
|
||||
* images. Therefore the documentation and examples should encourage people
|
||||
* to pass write_all_tables=TRUE; then it will take active thought to do the
|
||||
* wrong thing.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_start_compress(j_compress_ptr cinfo, boolean write_all_tables)
|
||||
{
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (write_all_tables)
|
||||
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
|
||||
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr)cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Perform master selection of active modules */
|
||||
jinit_compress_master(cinfo);
|
||||
/* Set up for the first pass */
|
||||
(*cinfo->master->prepare_for_pass) (cinfo);
|
||||
/* Ready for application to drive first pass through _jpeg_write_scanlines
|
||||
* or _jpeg_write_raw_data.
|
||||
*/
|
||||
cinfo->next_scanline = 0;
|
||||
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Write some scanlines of data to the JPEG compressor.
|
||||
*
|
||||
* The return value will be the number of lines actually written.
|
||||
* This should be less than the supplied num_lines only in case that
|
||||
* the data destination module has requested suspension of the compressor,
|
||||
* or if more than image_height scanlines are passed in.
|
||||
*
|
||||
* Note: we warn about excess calls to _jpeg_write_scanlines() since
|
||||
* this likely signals an application programmer error. However,
|
||||
* excess scanlines passed in the last valid call are *silently* ignored,
|
||||
* so that the application need not adjust num_lines for end-of-image
|
||||
* when using a multiple-scanline buffer.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
_jpeg_write_scanlines(j_compress_ptr cinfo, _JSAMPARRAY scanlines,
|
||||
JDIMENSION num_lines)
|
||||
{
|
||||
#if BITS_IN_JSAMPLE != 16 || defined(C_LOSSLESS_SUPPORTED)
|
||||
JDIMENSION row_ctr, rows_left;
|
||||
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE || cinfo->data_precision < 2)
|
||||
#else
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE ||
|
||||
cinfo->data_precision < BITS_IN_JSAMPLE - 3)
|
||||
#endif
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
}
|
||||
|
||||
if (cinfo->global_state != CSTATE_SCANNING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->next_scanline >= cinfo->image_height)
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long)cinfo->next_scanline;
|
||||
cinfo->progress->pass_limit = (long)cinfo->image_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo);
|
||||
}
|
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* _jpeg_write_scanlines. This lets output of the frame/scan headers be
|
||||
* delayed so that application can write COM, etc, markers between
|
||||
* jpeg_start_compress and _jpeg_write_scanlines.
|
||||
*/
|
||||
if (cinfo->master->call_pass_startup)
|
||||
(*cinfo->master->pass_startup) (cinfo);
|
||||
|
||||
/* Ignore any extra scanlines at bottom of image. */
|
||||
rows_left = cinfo->image_height - cinfo->next_scanline;
|
||||
if (num_lines > rows_left)
|
||||
num_lines = rows_left;
|
||||
|
||||
row_ctr = 0;
|
||||
(*cinfo->main->_process_data) (cinfo, scanlines, &row_ctr, num_lines);
|
||||
cinfo->next_scanline += row_ctr;
|
||||
return row_ctr;
|
||||
#else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
|
||||
/*
|
||||
* Alternate entry point to write raw data.
|
||||
* Processes exactly one iMCU row per call, unless suspended.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
_jpeg_write_raw_data(j_compress_ptr cinfo, _JSAMPIMAGE data,
|
||||
JDIMENSION num_lines)
|
||||
{
|
||||
JDIMENSION lines_per_iMCU_row;
|
||||
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
if (cinfo->master->lossless)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
|
||||
if (cinfo->global_state != CSTATE_RAW_OK)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->next_scanline >= cinfo->image_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long)cinfo->next_scanline;
|
||||
cinfo->progress->pass_limit = (long)cinfo->image_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo);
|
||||
}
|
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* _jpeg_write_raw_data. This lets output of the frame/scan headers be
|
||||
* delayed so that application can write COM, etc, markers between
|
||||
* jpeg_start_compress and _jpeg_write_raw_data.
|
||||
*/
|
||||
if (cinfo->master->call_pass_startup)
|
||||
(*cinfo->master->pass_startup) (cinfo);
|
||||
|
||||
/* Verify that at least one iMCU row has been passed. */
|
||||
lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
|
||||
if (num_lines < lines_per_iMCU_row)
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
|
||||
/* Directly compress the row. */
|
||||
if (!(*cinfo->coef->_compress_data) (cinfo, data)) {
|
||||
/* If compressor did not consume the whole row, suspend processing. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* OK, we processed one iMCU row. */
|
||||
cinfo->next_scanline += lines_per_iMCU_row;
|
||||
return lines_per_iMCU_row;
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 */
|
||||
932
thirdparty/libjpeg-turbo/src/jcarith.c
vendored
Normal file
932
thirdparty/libjpeg-turbo/src/jcarith.c
vendored
Normal file
@@ -0,0 +1,932 @@
|
||||
/*
|
||||
* jcarith.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Developed 1997-2009 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2015, 2018, 2021-2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains portable arithmetic entropy encoding routines for JPEG
|
||||
* (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1).
|
||||
*
|
||||
* Both sequential and progressive modes are supported in this single module.
|
||||
*
|
||||
* Suspension is not currently supported in this module.
|
||||
*
|
||||
* NOTE: All referenced figures are from
|
||||
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Expanded entropy encoder object for arithmetic encoding. */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_encoder pub; /* public fields */
|
||||
|
||||
JLONG c; /* C register, base of coding interval, layout as in sec. D.1.3 */
|
||||
JLONG a; /* A register, normalized size of coding interval */
|
||||
JLONG sc; /* counter for stacked 0xFF values which might overflow */
|
||||
JLONG zc; /* counter for pending 0x00 output values which might *
|
||||
* be discarded at the end ("Pacman" termination) */
|
||||
int ct; /* bit shift counter, determines when next byte will be written */
|
||||
int buffer; /* buffer for most recent output byte != 0xFF */
|
||||
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
|
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
int next_restart_num; /* next restart number to write (0-7) */
|
||||
|
||||
/* Pointers to statistics areas (these workspaces have image lifespan) */
|
||||
unsigned char *dc_stats[NUM_ARITH_TBLS];
|
||||
unsigned char *ac_stats[NUM_ARITH_TBLS];
|
||||
|
||||
/* Statistics bin for coding with fixed probability 0.5 */
|
||||
unsigned char fixed_bin[4];
|
||||
} arith_entropy_encoder;
|
||||
|
||||
typedef arith_entropy_encoder *arith_entropy_ptr;
|
||||
|
||||
/* The following two definitions specify the allocation chunk size
|
||||
* for the statistics area.
|
||||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
|
||||
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
|
||||
*
|
||||
* We use a compact representation with 1 byte per statistics bin,
|
||||
* thus the numbers directly represent byte sizes.
|
||||
* This 1 byte per statistics bin contains the meaning of the MPS
|
||||
* (more probable symbol) in the highest bit (mask 0x80), and the
|
||||
* index into the probability estimation state machine table
|
||||
* in the lower bits (mask 0x7F).
|
||||
*/
|
||||
|
||||
#define DC_STAT_BINS 64
|
||||
#define AC_STAT_BINS 256
|
||||
|
||||
/* NOTE: Uncomment the following #define if you want to use the
|
||||
* given formula for calculating the AC conditioning parameter Kx
|
||||
* for spectral selection progressive coding in section G.1.3.2
|
||||
* of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
|
||||
* Although the spec and P&M authors claim that this "has proven
|
||||
* to give good results for 8 bit precision samples", I'm not
|
||||
* convinced yet that this is really beneficial.
|
||||
* Early tests gave only very marginal compression enhancements
|
||||
* (a few - around 5 or so - bytes even for very large files),
|
||||
* which would turn out rather negative if we'd suppress the
|
||||
* DAC (Define Arithmetic Conditioning) marker segments for
|
||||
* the default parameters in the future.
|
||||
* Note that currently the marker writing module emits 12-byte
|
||||
* DAC segments for a full-component scan in a color image.
|
||||
* This is not worth worrying about IMHO. However, since the
|
||||
* spec defines the default values to be used if the tables
|
||||
* are omitted (unlike Huffman tables, which are required
|
||||
* anyway), one might optimize this behaviour in the future,
|
||||
* and then it would be disadvantageous to use custom tables if
|
||||
* they don't provide sufficient gain to exceed the DAC size.
|
||||
*
|
||||
* On the other hand, I'd consider it as a reasonable result
|
||||
* that the conditioning has no significant influence on the
|
||||
* compression performance. This means that the basic
|
||||
* statistical model is already rather stable.
|
||||
*
|
||||
* Thus, at the moment, we use the default conditioning values
|
||||
* anyway, and do not use the custom formula.
|
||||
*
|
||||
#define CALCULATE_SPECTRAL_CONDITIONING
|
||||
*/
|
||||
|
||||
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG.
|
||||
* We assume that int right shift is unsigned if JLONG right shift is,
|
||||
* which should be safe.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define ISHIFT_TEMPS int ishift_temp;
|
||||
#define IRIGHT_SHIFT(x, shft) \
|
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~0) << (16 - (shft))) : \
|
||||
(ishift_temp >> (shft)))
|
||||
#else
|
||||
#define ISHIFT_TEMPS
|
||||
#define IRIGHT_SHIFT(x, shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_byte(int val, j_compress_ptr cinfo)
|
||||
/* Write next output byte; we do not support suspension in this module. */
|
||||
{
|
||||
struct jpeg_destination_mgr *dest = cinfo->dest;
|
||||
|
||||
*dest->next_output_byte++ = (JOCTET)val;
|
||||
if (--dest->free_in_buffer == 0)
|
||||
if (!(*dest->empty_output_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of an arithmetic-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass(j_compress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy;
|
||||
JLONG temp;
|
||||
|
||||
/* Section D.1.8: Termination of encoding */
|
||||
|
||||
/* Find the e->c in the coding interval with the largest
|
||||
* number of trailing zero bits */
|
||||
if ((temp = (e->a - 1 + e->c) & 0xFFFF0000UL) < e->c)
|
||||
e->c = temp + 0x8000L;
|
||||
else
|
||||
e->c = temp;
|
||||
/* Send remaining bytes to output */
|
||||
e->c <<= e->ct;
|
||||
if (e->c & 0xF8000000UL) {
|
||||
/* One final overflow has to be handled */
|
||||
if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer + 1, cinfo);
|
||||
if (e->buffer + 1 == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
}
|
||||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
||||
e->sc = 0;
|
||||
} else {
|
||||
if (e->buffer == 0)
|
||||
++e->zc;
|
||||
else if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer, cinfo);
|
||||
}
|
||||
if (e->sc) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
do {
|
||||
emit_byte(0xFF, cinfo);
|
||||
emit_byte(0x00, cinfo);
|
||||
} while (--e->sc);
|
||||
}
|
||||
}
|
||||
/* Output final bytes only if they are not 0x00 */
|
||||
if (e->c & 0x7FFF800L) {
|
||||
if (e->zc) /* output final pending zero bytes */
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte((e->c >> 19) & 0xFF, cinfo);
|
||||
if (((e->c >> 19) & 0xFF) == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
if (e->c & 0x7F800L) {
|
||||
emit_byte((e->c >> 11) & 0xFF, cinfo);
|
||||
if (((e->c >> 11) & 0xFF) == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The core arithmetic encoding routine (common in JPEG and JBIG).
|
||||
* This needs to go as fast as possible.
|
||||
* Machine-dependent optimization facilities
|
||||
* are not utilized in this portable implementation.
|
||||
* However, this code should be fairly efficient and
|
||||
* may be a good base for further optimizations anyway.
|
||||
*
|
||||
* Parameter 'val' to be encoded may be 0 or 1 (binary decision).
|
||||
*
|
||||
* Note: I've added full "Pacman" termination support to the
|
||||
* byte output routines, which is equivalent to the optional
|
||||
* Discard_final_zeros procedure (Figure D.15) in the spec.
|
||||
* Thus, we always produce the shortest possible output
|
||||
* stream compliant to the spec (no trailing zero bytes,
|
||||
* except for FF stuffing).
|
||||
*
|
||||
* I've also introduced a new scheme for accessing
|
||||
* the probability estimation state machine table,
|
||||
* derived from Markus Kuhn's JBIG implementation.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
arith_encode(j_compress_ptr cinfo, unsigned char *st, int val)
|
||||
{
|
||||
register arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy;
|
||||
register unsigned char nl, nm;
|
||||
register JLONG qe, temp;
|
||||
register int sv;
|
||||
|
||||
/* Fetch values from our compact representation of Table D.2:
|
||||
* Qe values and probability estimation state machine
|
||||
*/
|
||||
sv = *st;
|
||||
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
|
||||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
|
||||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
|
||||
|
||||
/* Encode & estimation procedures per sections D.1.4 & D.1.5 */
|
||||
e->a -= qe;
|
||||
if (val != (sv >> 7)) {
|
||||
/* Encode the less probable symbol */
|
||||
if (e->a >= qe) {
|
||||
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||
* is larger than the interval size for the MPS, then exchange
|
||||
* the two symbols for coding efficiency, otherwise code the LPS
|
||||
* as usual: */
|
||||
e->c += e->a;
|
||||
e->a = qe;
|
||||
}
|
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||
} else {
|
||||
/* Encode the more probable symbol */
|
||||
if (e->a >= 0x8000L)
|
||||
return; /* A >= 0x8000 -> ready, no renormalization required */
|
||||
if (e->a < qe) {
|
||||
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||
* is larger than the interval size for the MPS, then exchange
|
||||
* the two symbols for coding efficiency: */
|
||||
e->c += e->a;
|
||||
e->a = qe;
|
||||
}
|
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||
}
|
||||
|
||||
/* Renormalization & data output per section D.1.6 */
|
||||
do {
|
||||
e->a <<= 1;
|
||||
e->c <<= 1;
|
||||
if (--e->ct == 0) {
|
||||
/* Another byte is ready for output */
|
||||
temp = e->c >> 19;
|
||||
if (temp > 0xFF) {
|
||||
/* Handle overflow over all stacked 0xFF bytes */
|
||||
if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer + 1, cinfo);
|
||||
if (e->buffer + 1 == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
}
|
||||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
||||
e->sc = 0;
|
||||
/* Note: The 3 spacer bits in the C register guarantee
|
||||
* that the new buffer byte can't be 0xFF here
|
||||
* (see page 160 in the P&M JPEG book). */
|
||||
e->buffer = temp & 0xFF; /* new output byte, might overflow later */
|
||||
} else if (temp == 0xFF) {
|
||||
++e->sc; /* stack 0xFF byte (which might overflow later) */
|
||||
} else {
|
||||
/* Output all stacked 0xFF bytes, they will not overflow any more */
|
||||
if (e->buffer == 0)
|
||||
++e->zc;
|
||||
else if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer, cinfo);
|
||||
}
|
||||
if (e->sc) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
do {
|
||||
emit_byte(0xFF, cinfo);
|
||||
emit_byte(0x00, cinfo);
|
||||
} while (--e->sc);
|
||||
}
|
||||
e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
|
||||
}
|
||||
e->c &= 0x7FFFFL;
|
||||
e->ct += 8;
|
||||
}
|
||||
} while (e->a < 0x8000L);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Emit a restart marker & resynchronize predictions.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
emit_restart(j_compress_ptr cinfo, int restart_num)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
finish_pass(cinfo);
|
||||
|
||||
emit_byte(0xFF, cinfo);
|
||||
emit_byte(JPEG_RST0 + restart_num, cinfo);
|
||||
|
||||
/* Re-initialize statistics areas */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* DC needs no table for refinement scan */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
memset(entropy->dc_stats[compptr->dc_tbl_no], 0, DC_STAT_BINS);
|
||||
/* Reset DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
/* AC needs no table when not present */
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Se) {
|
||||
memset(entropy->ac_stats[compptr->ac_tbl_no], 0, AC_STAT_BINS);
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset arithmetic encoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0x10000L;
|
||||
entropy->sc = 0;
|
||||
entropy->zc = 0;
|
||||
entropy->ct = 11;
|
||||
entropy->buffer = -1; /* empty */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_DC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl;
|
||||
int v, v2, m;
|
||||
ISHIFT_TEMPS
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
|
||||
|
||||
/* Compute the DC value after the required point transform by Al.
|
||||
* This is simply an arithmetic right shift.
|
||||
*/
|
||||
m = IRIGHT_SHIFT((int)((*block)[0]), cinfo->Al);
|
||||
|
||||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.4: Encode_DC_DIFF */
|
||||
if ((v = m - entropy->last_dc_val[ci]) == 0) {
|
||||
arith_encode(cinfo, st, 0);
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
} else {
|
||||
entropy->last_dc_val[ci] = m;
|
||||
arith_encode(cinfo, st, 1);
|
||||
/* Figure F.6: Encoding nonzero value v */
|
||||
/* Figure F.7: Encoding the sign of v */
|
||||
if (v > 0) {
|
||||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
||||
st += 2; /* Table F.4: SP = S0 + 2 */
|
||||
entropy->dc_context[ci] = 4; /* small positive diff category */
|
||||
} else {
|
||||
v = -v;
|
||||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
||||
st += 3; /* Table F.4: SN = S0 + 3 */
|
||||
entropy->dc_context[ci] = 8; /* small negative diff category */
|
||||
}
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] += 8; /* large diff category */
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_AC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int tbl, k, ke;
|
||||
int v, v2, m;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data block */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
||||
|
||||
/* Establish EOB (end-of-block) index */
|
||||
for (ke = cinfo->Se; ke > 0; ke--)
|
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably
|
||||
* in C, we shift after obtaining the absolute value.
|
||||
*/
|
||||
if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
|
||||
if (v >>= cinfo->Al) break;
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) break;
|
||||
}
|
||||
|
||||
/* Figure F.5: Encode_AC_Coefficients */
|
||||
for (k = cinfo->Ss; k <= ke; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||
for (;;) {
|
||||
if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
|
||||
if (v >>= cinfo->Al) {
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->fixed_bin, 0);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) {
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->fixed_bin, 1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
||||
}
|
||||
st += 2;
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
if (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
/* Encode EOB decision only if k <= cinfo->Se */
|
||||
if (k <= cinfo->Se) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 1);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_DC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
unsigned char *st;
|
||||
int Al, blkn;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
st = entropy->fixed_bin; /* use fixed probability estimation */
|
||||
Al = cinfo->Al;
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
/* We simply emit the Al'th bit of the DC coefficient value. */
|
||||
arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_AC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int tbl, k, ke, kex;
|
||||
int v;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data block */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
/* Section G.1.3.3: Encoding of AC coefficients */
|
||||
|
||||
/* Establish EOB (end-of-block) index */
|
||||
for (ke = cinfo->Se; ke > 0; ke--)
|
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably
|
||||
* in C, we shift after obtaining the absolute value.
|
||||
*/
|
||||
if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
|
||||
if (v >>= cinfo->Al) break;
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) break;
|
||||
}
|
||||
|
||||
/* Establish EOBx (previous stage end-of-block) index */
|
||||
for (kex = ke; kex > 0; kex--)
|
||||
if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) {
|
||||
if (v >>= cinfo->Ah) break;
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Ah) break;
|
||||
}
|
||||
|
||||
/* Figure G.10: Encode_AC_Coefficients_SA */
|
||||
for (k = cinfo->Ss; k <= ke; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (k > kex)
|
||||
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||
for (;;) {
|
||||
if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
|
||||
if (v >>= cinfo->Al) {
|
||||
if (v >> 1) /* previously nonzero coef */
|
||||
arith_encode(cinfo, st + 2, (v & 1));
|
||||
else { /* newly nonzero coef */
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->fixed_bin, 0);
|
||||
}
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) {
|
||||
if (v >> 1) /* previously nonzero coef */
|
||||
arith_encode(cinfo, st + 2, (v & 1));
|
||||
else { /* newly nonzero coef */
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->fixed_bin, 1);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
||||
}
|
||||
}
|
||||
/* Encode EOB decision only if k <= cinfo->Se */
|
||||
if (k <= cinfo->Se) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 1);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Encode and output one MCU's worth of arithmetic-compressed coefficients.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
jpeg_component_info *compptr;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl, k, ke;
|
||||
int v, v2, m;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
|
||||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
||||
|
||||
tbl = compptr->dc_tbl_no;
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.4: Encode_DC_DIFF */
|
||||
if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
|
||||
arith_encode(cinfo, st, 0);
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
} else {
|
||||
entropy->last_dc_val[ci] = (*block)[0];
|
||||
arith_encode(cinfo, st, 1);
|
||||
/* Figure F.6: Encoding nonzero value v */
|
||||
/* Figure F.7: Encoding the sign of v */
|
||||
if (v > 0) {
|
||||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
||||
st += 2; /* Table F.4: SP = S0 + 2 */
|
||||
entropy->dc_context[ci] = 4; /* small positive diff category */
|
||||
} else {
|
||||
v = -v;
|
||||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
||||
st += 3; /* Table F.4: SN = S0 + 3 */
|
||||
entropy->dc_context[ci] = 8; /* small negative diff category */
|
||||
}
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] += 8; /* large diff category */
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
|
||||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
||||
|
||||
tbl = compptr->ac_tbl_no;
|
||||
|
||||
/* Establish EOB (end-of-block) index */
|
||||
for (ke = DCTSIZE2 - 1; ke > 0; ke--)
|
||||
if ((*block)[jpeg_natural_order[ke]]) break;
|
||||
|
||||
/* Figure F.5: Encode_AC_Coefficients */
|
||||
for (k = 1; k <= ke; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||
while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
|
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
||||
}
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
/* Figure F.6: Encoding nonzero value v */
|
||||
/* Figure F.7: Encoding the sign of v */
|
||||
if (v > 0) {
|
||||
arith_encode(cinfo, entropy->fixed_bin, 0);
|
||||
} else {
|
||||
v = -v;
|
||||
arith_encode(cinfo, entropy->fixed_bin, 1);
|
||||
}
|
||||
st += 2;
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
if (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
/* Encode EOB decision only if k <= DCTSIZE2 - 1 */
|
||||
if (k <= DCTSIZE2 - 1) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 1);
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an arithmetic-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass(j_compress_ptr cinfo, boolean gather_statistics)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
int ci, tbl;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (gather_statistics)
|
||||
/* Make sure to avoid that in the master control logic!
|
||||
* We are fully adaptive here and need no extra
|
||||
* statistics gathering pass!
|
||||
*/
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
|
||||
/* We assume jcmaster.c already validated the progressive scan parameters. */
|
||||
|
||||
/* Select execution routines */
|
||||
if (cinfo->progressive_mode) {
|
||||
if (cinfo->Ah == 0) {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.encode_mcu = encode_mcu_DC_first;
|
||||
else
|
||||
entropy->pub.encode_mcu = encode_mcu_AC_first;
|
||||
} else {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
||||
else
|
||||
entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
||||
}
|
||||
} else
|
||||
entropy->pub.encode_mcu = encode_mcu;
|
||||
|
||||
/* Allocate & initialize requested statistics areas */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* DC needs no table for refinement scan */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
tbl = compptr->dc_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->dc_stats[tbl] == NULL)
|
||||
entropy->dc_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE, DC_STAT_BINS);
|
||||
memset(entropy->dc_stats[tbl], 0, DC_STAT_BINS);
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
/* AC needs no table when not present */
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Se) {
|
||||
tbl = compptr->ac_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->ac_stats[tbl] == NULL)
|
||||
entropy->ac_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE, AC_STAT_BINS);
|
||||
memset(entropy->ac_stats[tbl], 0, AC_STAT_BINS);
|
||||
#ifdef CALCULATE_SPECTRAL_CONDITIONING
|
||||
if (cinfo->progressive_mode)
|
||||
/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
|
||||
cinfo->arith_ac_K[tbl] = cinfo->Ss +
|
||||
((8 + cinfo->Se - cinfo->Ss) >> 4);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize arithmetic encoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0x10000L;
|
||||
entropy->sc = 0;
|
||||
entropy->zc = 0;
|
||||
entropy->ct = 11;
|
||||
entropy->buffer = -1; /* empty */
|
||||
|
||||
/* Initialize restart stuff */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for arithmetic entropy encoding.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_arith_encoder(j_compress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy;
|
||||
int i;
|
||||
|
||||
entropy = (arith_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(arith_entropy_encoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
|
||||
entropy->pub.start_pass = start_pass;
|
||||
entropy->pub.finish_pass = finish_pass;
|
||||
|
||||
/* Mark tables unallocated */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
entropy->dc_stats[i] = NULL;
|
||||
entropy->ac_stats[i] = NULL;
|
||||
}
|
||||
|
||||
/* Initialize index for fixed probability estimation */
|
||||
entropy->fixed_bin[0] = 113;
|
||||
}
|
||||
454
thirdparty/libjpeg-turbo/src/jccoefct.c
vendored
Normal file
454
thirdparty/libjpeg-turbo/src/jccoefct.c
vendored
Normal file
@@ -0,0 +1,454 @@
|
||||
/*
|
||||
* jccoefct.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains the coefficient buffer controller for compression.
|
||||
* This controller is the top level of the lossy JPEG compressor proper.
|
||||
* The coefficient buffer lies between forward-DCT and entropy encoding steps.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
/* We use a full-image coefficient buffer when doing Huffman optimization,
|
||||
* and also for writing multiple-scan JPEG files. In all cases, the DCT
|
||||
* step is run during the first pass, and subsequent passes need only read
|
||||
* the buffered coefficients.
|
||||
*/
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
#define FULL_COEF_BUFFER_SUPPORTED
|
||||
#else
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
#define FULL_COEF_BUFFER_SUPPORTED
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_coef_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
||||
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
|
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||
|
||||
/* For single-pass compression, it's sufficient to buffer just one MCU
|
||||
* (although this may prove a bit slow in practice). We allocate a
|
||||
* workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
|
||||
* MCU constructed and sent. In multi-pass modes, this array points to the
|
||||
* current MCU's blocks within the virtual arrays.
|
||||
*/
|
||||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||
|
||||
/* In multi-pass modes, we need a virtual block array for each component. */
|
||||
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
||||
} my_coef_controller;
|
||||
|
||||
typedef my_coef_controller *my_coef_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(boolean) compress_data(j_compress_ptr cinfo, _JSAMPIMAGE input_buf);
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
METHODDEF(boolean) compress_first_pass(j_compress_ptr cinfo,
|
||||
_JSAMPIMAGE input_buf);
|
||||
METHODDEF(boolean) compress_output(j_compress_ptr cinfo,
|
||||
_JSAMPIMAGE input_buf);
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
start_iMCU_row(j_compress_ptr cinfo)
|
||||
/* Reset within-iMCU-row counters for a new row */
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||
* But at the bottom of the image, process only what's left.
|
||||
*/
|
||||
if (cinfo->comps_in_scan > 1) {
|
||||
coef->MCU_rows_per_iMCU_row = 1;
|
||||
} else {
|
||||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows - 1))
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||
else
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||
}
|
||||
|
||||
coef->mcu_ctr = 0;
|
||||
coef->MCU_vert_offset = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_coef(j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
|
||||
coef->iMCU_row_num = 0;
|
||||
start_iMCU_row(cinfo);
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (coef->whole_image[0] != NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub._compress_data = compress_data;
|
||||
break;
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
if (coef->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub._compress_data = compress_first_pass;
|
||||
break;
|
||||
case JBUF_CRANK_DEST:
|
||||
if (coef->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub._compress_data = compress_output;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the single-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the image.
|
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||
*
|
||||
* NB: input_buf contains a plane for each component in image,
|
||||
* which we index according to the component's SOF position.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_data(j_compress_ptr cinfo, _JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
int blkn, bi, ci, yindex, yoffset, blockcnt;
|
||||
JDIMENSION ypos, xpos;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Loop to write as much as one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
|
||||
MCU_col_num++) {
|
||||
/* Determine where data comes from in input_buf and do the DCT thing.
|
||||
* Each call on forward_DCT processes a horizontal row of DCT blocks
|
||||
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
|
||||
* sequentially. Dummy blocks at the right or bottom edge are filled in
|
||||
* specially. The data in them does not matter for image reconstruction,
|
||||
* so we fill them with values that will encode to the smallest amount of
|
||||
* data, viz: all zeroes in the AC entries, DC entries equal to previous
|
||||
* block's DC value. (Thanks to Thomas Kinsman for this idea.)
|
||||
*/
|
||||
blkn = 0;
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width :
|
||||
compptr->last_col_width;
|
||||
xpos = MCU_col_num * compptr->MCU_sample_width;
|
||||
ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
if (coef->iMCU_row_num < last_iMCU_row ||
|
||||
yoffset + yindex < compptr->last_row_height) {
|
||||
(*cinfo->fdct->_forward_DCT) (cinfo, compptr,
|
||||
input_buf[compptr->component_index],
|
||||
coef->MCU_buffer[blkn],
|
||||
ypos, xpos, (JDIMENSION)blockcnt);
|
||||
if (blockcnt < compptr->MCU_width) {
|
||||
/* Create some dummy blocks at the right edge of the image. */
|
||||
jzero_far((void *)coef->MCU_buffer[blkn + blockcnt],
|
||||
(compptr->MCU_width - blockcnt) * sizeof(JBLOCK));
|
||||
for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
|
||||
coef->MCU_buffer[blkn + bi][0][0] =
|
||||
coef->MCU_buffer[blkn + bi - 1][0][0];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* Create a row of dummy blocks at the bottom of the image. */
|
||||
jzero_far((void *)coef->MCU_buffer[blkn],
|
||||
compptr->MCU_width * sizeof(JBLOCK));
|
||||
for (bi = 0; bi < compptr->MCU_width; bi++) {
|
||||
coef->MCU_buffer[blkn + bi][0][0] =
|
||||
coef->MCU_buffer[blkn - 1][0][0];
|
||||
}
|
||||
}
|
||||
blkn += compptr->MCU_width;
|
||||
ypos += DCTSIZE;
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. In event of a suspension failure, we will
|
||||
* re-DCT the MCU on restart (a bit inefficient, could be fixed...)
|
||||
*/
|
||||
if (!(*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->mcu_ctr = MCU_col_num;
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->mcu_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
coef->iMCU_row_num++;
|
||||
start_iMCU_row(cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the first pass of a multi-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the image.
|
||||
* This amount of data is read from the source buffer, DCT'd and quantized,
|
||||
* and saved into the virtual arrays. We also generate suitable dummy blocks
|
||||
* as needed at the right and lower edges. (The dummy blocks are constructed
|
||||
* in the virtual arrays, which have been padded appropriately.) This makes
|
||||
* it possible for subsequent passes not to worry about real vs. dummy blocks.
|
||||
*
|
||||
* We must also emit the data to the entropy encoder. This is conveniently
|
||||
* done by calling compress_output() after we've loaded the current strip
|
||||
* of the virtual arrays.
|
||||
*
|
||||
* NB: input_buf contains a plane for each component in image. All
|
||||
* components are DCT'd and loaded into the virtual arrays in this pass.
|
||||
* However, it may be that only a subset of the components are emitted to
|
||||
* the entropy encoder during this first pass; be careful about looking
|
||||
* at the scan-dependent variables (MCU dimensions, etc).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_first_pass(j_compress_ptr cinfo, _JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
JDIMENSION blocks_across, MCUs_across, MCUindex;
|
||||
int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
|
||||
JCOEF lastDC;
|
||||
jpeg_component_info *compptr;
|
||||
JBLOCKARRAY buffer;
|
||||
JBLOCKROW thisblockrow, lastblockrow;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Align the virtual buffer for this component. */
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr)cinfo, coef->whole_image[ci],
|
||||
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||
(JDIMENSION)compptr->v_samp_factor, TRUE);
|
||||
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||
if (coef->iMCU_row_num < last_iMCU_row)
|
||||
block_rows = compptr->v_samp_factor;
|
||||
else {
|
||||
/* NB: can't use last_row_height here, since may not be set! */
|
||||
block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||
}
|
||||
blocks_across = compptr->width_in_blocks;
|
||||
h_samp_factor = compptr->h_samp_factor;
|
||||
/* Count number of dummy blocks to be added at the right margin. */
|
||||
ndummy = (int)(blocks_across % h_samp_factor);
|
||||
if (ndummy > 0)
|
||||
ndummy = h_samp_factor - ndummy;
|
||||
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call
|
||||
* on forward_DCT processes a complete horizontal row of DCT blocks.
|
||||
*/
|
||||
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||
thisblockrow = buffer[block_row];
|
||||
(*cinfo->fdct->_forward_DCT) (cinfo, compptr,
|
||||
input_buf[ci], thisblockrow,
|
||||
(JDIMENSION)(block_row * DCTSIZE),
|
||||
(JDIMENSION)0, blocks_across);
|
||||
if (ndummy > 0) {
|
||||
/* Create dummy blocks at the right edge of the image. */
|
||||
thisblockrow += blocks_across; /* => first dummy block */
|
||||
jzero_far((void *)thisblockrow, ndummy * sizeof(JBLOCK));
|
||||
lastDC = thisblockrow[-1][0];
|
||||
for (bi = 0; bi < ndummy; bi++) {
|
||||
thisblockrow[bi][0] = lastDC;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* If at end of image, create dummy block rows as needed.
|
||||
* The tricky part here is that within each MCU, we want the DC values
|
||||
* of the dummy blocks to match the last real block's DC value.
|
||||
* This squeezes a few more bytes out of the resulting file...
|
||||
*/
|
||||
if (coef->iMCU_row_num == last_iMCU_row) {
|
||||
blocks_across += ndummy; /* include lower right corner */
|
||||
MCUs_across = blocks_across / h_samp_factor;
|
||||
for (block_row = block_rows; block_row < compptr->v_samp_factor;
|
||||
block_row++) {
|
||||
thisblockrow = buffer[block_row];
|
||||
lastblockrow = buffer[block_row - 1];
|
||||
jzero_far((void *)thisblockrow,
|
||||
(size_t)(blocks_across * sizeof(JBLOCK)));
|
||||
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
|
||||
lastDC = lastblockrow[h_samp_factor - 1][0];
|
||||
for (bi = 0; bi < h_samp_factor; bi++) {
|
||||
thisblockrow[bi][0] = lastDC;
|
||||
}
|
||||
thisblockrow += h_samp_factor; /* advance to next MCU in row */
|
||||
lastblockrow += h_samp_factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* NB: compress_output will increment iMCU_row_num if successful.
|
||||
* A suspension return will result in redoing all the work above next time.
|
||||
*/
|
||||
|
||||
/* Emit data to the entropy encoder, sharing code with subsequent passes */
|
||||
return compress_output(cinfo, input_buf);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in subsequent passes of a multi-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the scan.
|
||||
* The data is obtained from the virtual arrays and fed to the entropy coder.
|
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||
*
|
||||
* NB: input_buf is ignored; it is likely to be a NULL pointer.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_output(j_compress_ptr cinfo, _JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
int blkn, ci, xindex, yindex, yoffset;
|
||||
JDIMENSION start_col;
|
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||
JBLOCKROW buffer_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Align the virtual buffers for the components used in this scan.
|
||||
* NB: during first pass, this is safe only because the buffers will
|
||||
* already be aligned properly, so jmemmgr.c won't need to do any I/O.
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr)cinfo, coef->whole_image[compptr->component_index],
|
||||
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||
(JDIMENSION)compptr->v_samp_factor, FALSE);
|
||||
}
|
||||
|
||||
/* Loop to process one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
||||
MCU_col_num++) {
|
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
buffer_ptr = buffer[ci][yindex + yoffset] + start_col;
|
||||
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
||||
coef->MCU_buffer[blkn++] = buffer_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. */
|
||||
if (!(*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->mcu_ctr = MCU_col_num;
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->mcu_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
coef->iMCU_row_num++;
|
||||
start_iMCU_row(cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
#endif /* FULL_COEF_BUFFER_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_c_coef_controller(j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_coef_ptr coef;
|
||||
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
coef = (my_coef_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_coef_controller));
|
||||
cinfo->coef = (struct jpeg_c_coef_controller *)coef;
|
||||
coef->pub.start_pass = start_pass_coef;
|
||||
|
||||
/* Create the coefficient buffer. */
|
||||
if (need_full_buffer) {
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
/* Allocate a full-image virtual array for each component, */
|
||||
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE, FALSE,
|
||||
(JDIMENSION)jround_up((long)compptr->width_in_blocks,
|
||||
(long)compptr->h_samp_factor),
|
||||
(JDIMENSION)jround_up((long)compptr->height_in_blocks,
|
||||
(long)compptr->v_samp_factor),
|
||||
(JDIMENSION)compptr->v_samp_factor);
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
} else {
|
||||
/* We only need a single-MCU buffer. */
|
||||
JBLOCKROW buffer;
|
||||
int i;
|
||||
|
||||
buffer = (JBLOCKROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
|
||||
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
|
||||
coef->MCU_buffer[i] = buffer + i;
|
||||
}
|
||||
coef->whole_image[0] = NULL; /* flag for no virtual arrays */
|
||||
}
|
||||
}
|
||||
152
thirdparty/libjpeg-turbo/src/jccolext.c
vendored
Normal file
152
thirdparty/libjpeg-turbo/src/jccolext.c
vendored
Normal file
@@ -0,0 +1,152 @@
|
||||
/*
|
||||
* jccolext.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2009-2012, 2015, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains input colorspace conversion routines.
|
||||
*/
|
||||
|
||||
|
||||
/* This file is included by jccolor.c */
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
*
|
||||
* Note that we change from the application's interleaved-pixel format
|
||||
* to our internal noninterleaved, one-plane-per-component format.
|
||||
* The input buffer is therefore three times as wide as the output buffer.
|
||||
*
|
||||
* A starting row offset is provided only for the output buffer. The caller
|
||||
* can easily adjust the passed input_buf value to accommodate any row
|
||||
* offset required on that side.
|
||||
*/
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
rgb_ycc_convert_internal(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPIMAGE output_buf, JDIMENSION output_row,
|
||||
int num_rows)
|
||||
{
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register JLONG *ctab = cconvert->rgb_ycc_tab;
|
||||
register _JSAMPROW inptr;
|
||||
register _JSAMPROW outptr0, outptr1, outptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr0 = output_buf[0][output_row];
|
||||
outptr1 = output_buf[1][output_row];
|
||||
outptr2 = output_buf[2][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = RANGE_LIMIT(inptr[RGB_RED]);
|
||||
g = RANGE_LIMIT(inptr[RGB_GREEN]);
|
||||
b = RANGE_LIMIT(inptr[RGB_BLUE]);
|
||||
inptr += RGB_PIXELSIZE;
|
||||
/* If the inputs are 0.._MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation.
|
||||
* Hence the value being shifted is never negative, and we don't
|
||||
* need the general RIGHT_SHIFT macro.
|
||||
*/
|
||||
/* Y */
|
||||
outptr0[col] = (_JSAMPLE)((ctab[r + R_Y_OFF] + ctab[g + G_Y_OFF] +
|
||||
ctab[b + B_Y_OFF]) >> SCALEBITS);
|
||||
/* Cb */
|
||||
outptr1[col] = (_JSAMPLE)((ctab[r + R_CB_OFF] + ctab[g + G_CB_OFF] +
|
||||
ctab[b + B_CB_OFF]) >> SCALEBITS);
|
||||
/* Cr */
|
||||
outptr2[col] = (_JSAMPLE)((ctab[r + R_CR_OFF] + ctab[g + G_CR_OFF] +
|
||||
ctab[b + B_CR_OFF]) >> SCALEBITS);
|
||||
}
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/**************** Cases other than RGB -> YCbCr **************/
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles RGB->grayscale conversion, which is the same
|
||||
* as the RGB->Y portion of RGB->YCbCr.
|
||||
* We assume rgb_ycc_start has been called (we only use the Y tables).
|
||||
*/
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
rgb_gray_convert_internal(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPIMAGE output_buf, JDIMENSION output_row,
|
||||
int num_rows)
|
||||
{
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register JLONG *ctab = cconvert->rgb_ycc_tab;
|
||||
register _JSAMPROW inptr;
|
||||
register _JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr = output_buf[0][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = RANGE_LIMIT(inptr[RGB_RED]);
|
||||
g = RANGE_LIMIT(inptr[RGB_GREEN]);
|
||||
b = RANGE_LIMIT(inptr[RGB_BLUE]);
|
||||
inptr += RGB_PIXELSIZE;
|
||||
/* Y */
|
||||
outptr[col] = (_JSAMPLE)((ctab[r + R_Y_OFF] + ctab[g + G_Y_OFF] +
|
||||
ctab[b + B_Y_OFF]) >> SCALEBITS);
|
||||
}
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles extended RGB->plain RGB conversion
|
||||
*/
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
rgb_rgb_convert_internal(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPIMAGE output_buf, JDIMENSION output_row,
|
||||
int num_rows)
|
||||
{
|
||||
register _JSAMPROW inptr;
|
||||
register _JSAMPROW outptr0, outptr1, outptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr0 = output_buf[0][output_row];
|
||||
outptr1 = output_buf[1][output_row];
|
||||
outptr2 = output_buf[2][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr0[col] = inptr[RGB_RED];
|
||||
outptr1[col] = inptr[RGB_GREEN];
|
||||
outptr2[col] = inptr[RGB_BLUE];
|
||||
inptr += RGB_PIXELSIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
755
thirdparty/libjpeg-turbo/src/jccolor.c
vendored
Normal file
755
thirdparty/libjpeg-turbo/src/jccolor.c
vendored
Normal file
@@ -0,0 +1,755 @@
|
||||
/*
|
||||
* jccolor.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||||
* Copyright (C) 2009-2012, 2015, 2022, 2024, D. R. Commander.
|
||||
* Copyright (C) 2014, MIPS Technologies, Inc., California.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains input colorspace conversion routines.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jsimd.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16 || defined(C_LOSSLESS_SUPPORTED)
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_converter pub; /* public fields */
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
/* Private state for RGB->YCC conversion */
|
||||
JLONG *rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
|
||||
#endif
|
||||
} my_color_converter;
|
||||
|
||||
typedef my_color_converter *my_cconvert_ptr;
|
||||
|
||||
|
||||
/**************** RGB -> YCbCr conversion: most common case **************/
|
||||
|
||||
/*
|
||||
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
|
||||
* normalized to the range 0.._MAXJSAMPLE rather than -0.5 .. 0.5.
|
||||
* The conversion equations to be implemented are therefore
|
||||
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
|
||||
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + _CENTERJSAMPLE
|
||||
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + _CENTERJSAMPLE
|
||||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
|
||||
* Note: older versions of the IJG code used a zero offset of _MAXJSAMPLE/2,
|
||||
* rather than _CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
|
||||
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
|
||||
* were not represented exactly. Now we sacrifice exact representation of
|
||||
* maximum red and maximum blue in order to get exact grayscales.
|
||||
*
|
||||
* To avoid floating-point arithmetic, we represent the fractional constants
|
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
|
||||
* the products by 2^16, with appropriate rounding, to get the correct answer.
|
||||
*
|
||||
* For even more speed, we avoid doing any multiplications in the inner loop
|
||||
* by precalculating the constants times R,G,B for all possible values.
|
||||
* For 8-bit samples this is very reasonable (only 256 entries per table);
|
||||
* for 12-bit samples it is still acceptable. It's not very reasonable for
|
||||
* 16-bit samples, but if you want lossless storage you shouldn't be changing
|
||||
* colorspace anyway.
|
||||
* The _CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
|
||||
* in the tables to save adding them separately in the inner loop.
|
||||
*/
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define CBCR_OFFSET ((JLONG)_CENTERJSAMPLE << SCALEBITS)
|
||||
#define ONE_HALF ((JLONG)1 << (SCALEBITS - 1))
|
||||
#define FIX(x) ((JLONG)((x) * (1L << SCALEBITS) + 0.5))
|
||||
|
||||
/* We allocate one big table and divide it up into eight parts, instead of
|
||||
* doing eight alloc_small requests. This lets us use a single table base
|
||||
* address, which can be held in a register in the inner loops on many
|
||||
* machines (more than can hold all eight addresses, anyway).
|
||||
*/
|
||||
|
||||
#define R_Y_OFF 0 /* offset to R => Y section */
|
||||
#define G_Y_OFF (1 * (_MAXJSAMPLE + 1)) /* offset to G => Y section */
|
||||
#define B_Y_OFF (2 * (_MAXJSAMPLE + 1)) /* etc. */
|
||||
#define R_CB_OFF (3 * (_MAXJSAMPLE + 1))
|
||||
#define G_CB_OFF (4 * (_MAXJSAMPLE + 1))
|
||||
#define B_CB_OFF (5 * (_MAXJSAMPLE + 1))
|
||||
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
|
||||
#define G_CR_OFF (6 * (_MAXJSAMPLE + 1))
|
||||
#define B_CR_OFF (7 * (_MAXJSAMPLE + 1))
|
||||
#define TABLE_SIZE (8 * (_MAXJSAMPLE + 1))
|
||||
|
||||
/* 12-bit samples use a 16-bit data type, so it is possible to pass
|
||||
* out-of-range sample values (< 0 or > 4095) to jpeg_write_scanlines().
|
||||
* Thus, we mask the incoming 12-bit samples to guard against overrunning
|
||||
* or underrunning the conversion tables.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 12
|
||||
#define RANGE_LIMIT(value) ((value) & 0xFFF)
|
||||
#else
|
||||
#define RANGE_LIMIT(value) (value)
|
||||
#endif
|
||||
|
||||
|
||||
/* Include inline routines for colorspace extensions */
|
||||
|
||||
#include "jccolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_PIXELSIZE
|
||||
|
||||
#define RGB_RED EXT_RGB_RED
|
||||
#define RGB_GREEN EXT_RGB_GREEN
|
||||
#define RGB_BLUE EXT_RGB_BLUE
|
||||
#define RGB_PIXELSIZE EXT_RGB_PIXELSIZE
|
||||
#define rgb_ycc_convert_internal extrgb_ycc_convert_internal
|
||||
#define rgb_gray_convert_internal extrgb_gray_convert_internal
|
||||
#define rgb_rgb_convert_internal extrgb_rgb_convert_internal
|
||||
#include "jccolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef rgb_ycc_convert_internal
|
||||
#undef rgb_gray_convert_internal
|
||||
#undef rgb_rgb_convert_internal
|
||||
|
||||
#define RGB_RED EXT_RGBX_RED
|
||||
#define RGB_GREEN EXT_RGBX_GREEN
|
||||
#define RGB_BLUE EXT_RGBX_BLUE
|
||||
#define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE
|
||||
#define rgb_ycc_convert_internal extrgbx_ycc_convert_internal
|
||||
#define rgb_gray_convert_internal extrgbx_gray_convert_internal
|
||||
#define rgb_rgb_convert_internal extrgbx_rgb_convert_internal
|
||||
#include "jccolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef rgb_ycc_convert_internal
|
||||
#undef rgb_gray_convert_internal
|
||||
#undef rgb_rgb_convert_internal
|
||||
|
||||
#define RGB_RED EXT_BGR_RED
|
||||
#define RGB_GREEN EXT_BGR_GREEN
|
||||
#define RGB_BLUE EXT_BGR_BLUE
|
||||
#define RGB_PIXELSIZE EXT_BGR_PIXELSIZE
|
||||
#define rgb_ycc_convert_internal extbgr_ycc_convert_internal
|
||||
#define rgb_gray_convert_internal extbgr_gray_convert_internal
|
||||
#define rgb_rgb_convert_internal extbgr_rgb_convert_internal
|
||||
#include "jccolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef rgb_ycc_convert_internal
|
||||
#undef rgb_gray_convert_internal
|
||||
#undef rgb_rgb_convert_internal
|
||||
|
||||
#define RGB_RED EXT_BGRX_RED
|
||||
#define RGB_GREEN EXT_BGRX_GREEN
|
||||
#define RGB_BLUE EXT_BGRX_BLUE
|
||||
#define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE
|
||||
#define rgb_ycc_convert_internal extbgrx_ycc_convert_internal
|
||||
#define rgb_gray_convert_internal extbgrx_gray_convert_internal
|
||||
#define rgb_rgb_convert_internal extbgrx_rgb_convert_internal
|
||||
#include "jccolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef rgb_ycc_convert_internal
|
||||
#undef rgb_gray_convert_internal
|
||||
#undef rgb_rgb_convert_internal
|
||||
|
||||
#define RGB_RED EXT_XBGR_RED
|
||||
#define RGB_GREEN EXT_XBGR_GREEN
|
||||
#define RGB_BLUE EXT_XBGR_BLUE
|
||||
#define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE
|
||||
#define rgb_ycc_convert_internal extxbgr_ycc_convert_internal
|
||||
#define rgb_gray_convert_internal extxbgr_gray_convert_internal
|
||||
#define rgb_rgb_convert_internal extxbgr_rgb_convert_internal
|
||||
#include "jccolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef rgb_ycc_convert_internal
|
||||
#undef rgb_gray_convert_internal
|
||||
#undef rgb_rgb_convert_internal
|
||||
|
||||
#define RGB_RED EXT_XRGB_RED
|
||||
#define RGB_GREEN EXT_XRGB_GREEN
|
||||
#define RGB_BLUE EXT_XRGB_BLUE
|
||||
#define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE
|
||||
#define rgb_ycc_convert_internal extxrgb_ycc_convert_internal
|
||||
#define rgb_gray_convert_internal extxrgb_gray_convert_internal
|
||||
#define rgb_rgb_convert_internal extxrgb_rgb_convert_internal
|
||||
#include "jccolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef rgb_ycc_convert_internal
|
||||
#undef rgb_gray_convert_internal
|
||||
#undef rgb_rgb_convert_internal
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for RGB->YCC colorspace conversion.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_ycc_start(j_compress_ptr cinfo)
|
||||
{
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert;
|
||||
JLONG *rgb_ycc_tab;
|
||||
JLONG i;
|
||||
|
||||
/* Allocate and fill in the conversion tables. */
|
||||
cconvert->rgb_ycc_tab = rgb_ycc_tab = (JLONG *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(TABLE_SIZE * sizeof(JLONG)));
|
||||
|
||||
for (i = 0; i <= _MAXJSAMPLE; i++) {
|
||||
rgb_ycc_tab[i + R_Y_OFF] = FIX(0.29900) * i;
|
||||
rgb_ycc_tab[i + G_Y_OFF] = FIX(0.58700) * i;
|
||||
rgb_ycc_tab[i + B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
|
||||
rgb_ycc_tab[i + R_CB_OFF] = (-FIX(0.16874)) * i;
|
||||
rgb_ycc_tab[i + G_CB_OFF] = (-FIX(0.33126)) * i;
|
||||
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
|
||||
* This ensures that the maximum output will round to _MAXJSAMPLE
|
||||
* not _MAXJSAMPLE+1, and thus that we don't have to range-limit.
|
||||
*/
|
||||
rgb_ycc_tab[i + B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF - 1;
|
||||
/* B=>Cb and R=>Cr tables are the same
|
||||
rgb_ycc_tab[i + R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF - 1;
|
||||
*/
|
||||
rgb_ycc_tab[i + G_CR_OFF] = (-FIX(0.41869)) * i;
|
||||
rgb_ycc_tab[i + B_CR_OFF] = (-FIX(0.08131)) * i;
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_ycc_convert(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
switch (cinfo->in_color_space) {
|
||||
case JCS_EXT_RGB:
|
||||
extrgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_RGBX:
|
||||
case JCS_EXT_RGBA:
|
||||
extrgbx_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_BGR:
|
||||
extbgr_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_BGRX:
|
||||
case JCS_EXT_BGRA:
|
||||
extbgrx_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_XBGR:
|
||||
case JCS_EXT_ABGR:
|
||||
extxbgr_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_XRGB:
|
||||
case JCS_EXT_ARGB:
|
||||
extxrgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
default:
|
||||
rgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**************** Cases other than RGB -> YCbCr **************/
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_gray_convert(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
switch (cinfo->in_color_space) {
|
||||
case JCS_EXT_RGB:
|
||||
extrgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_RGBX:
|
||||
case JCS_EXT_RGBA:
|
||||
extrgbx_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_BGR:
|
||||
extbgr_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_BGRX:
|
||||
case JCS_EXT_BGRA:
|
||||
extbgrx_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_XBGR:
|
||||
case JCS_EXT_ABGR:
|
||||
extxbgr_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_XRGB:
|
||||
case JCS_EXT_ARGB:
|
||||
extxrgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
default:
|
||||
rgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Extended RGB to plain RGB conversion
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_rgb_convert(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
switch (cinfo->in_color_space) {
|
||||
case JCS_EXT_RGB:
|
||||
extrgb_rgb_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_RGBX:
|
||||
case JCS_EXT_RGBA:
|
||||
extrgbx_rgb_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_BGR:
|
||||
extbgr_rgb_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_BGRX:
|
||||
case JCS_EXT_BGRA:
|
||||
extbgrx_rgb_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_XBGR:
|
||||
case JCS_EXT_ABGR:
|
||||
extxbgr_rgb_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_XRGB:
|
||||
case JCS_EXT_ARGB:
|
||||
extxrgb_rgb_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
default:
|
||||
rgb_rgb_convert_internal(cinfo, input_buf, output_buf, output_row,
|
||||
num_rows);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles Adobe-style CMYK->YCCK conversion,
|
||||
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
|
||||
* conversion as above, while passing K (black) unchanged.
|
||||
* We assume rgb_ycc_start has been called.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
cmyk_ycck_convert(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register JLONG *ctab = cconvert->rgb_ycc_tab;
|
||||
register _JSAMPROW inptr;
|
||||
register _JSAMPROW outptr0, outptr1, outptr2, outptr3;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr0 = output_buf[0][output_row];
|
||||
outptr1 = output_buf[1][output_row];
|
||||
outptr2 = output_buf[2][output_row];
|
||||
outptr3 = output_buf[3][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = _MAXJSAMPLE - RANGE_LIMIT(inptr[0]);
|
||||
g = _MAXJSAMPLE - RANGE_LIMIT(inptr[1]);
|
||||
b = _MAXJSAMPLE - RANGE_LIMIT(inptr[2]);
|
||||
/* K passes through as-is */
|
||||
outptr3[col] = inptr[3];
|
||||
inptr += 4;
|
||||
/* If the inputs are 0.._MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation.
|
||||
* Hence the value being shifted is never negative, and we don't
|
||||
* need the general RIGHT_SHIFT macro.
|
||||
*/
|
||||
/* Y */
|
||||
outptr0[col] = (_JSAMPLE)((ctab[r + R_Y_OFF] + ctab[g + G_Y_OFF] +
|
||||
ctab[b + B_Y_OFF]) >> SCALEBITS);
|
||||
/* Cb */
|
||||
outptr1[col] = (_JSAMPLE)((ctab[r + R_CB_OFF] + ctab[g + G_CB_OFF] +
|
||||
ctab[b + B_CB_OFF]) >> SCALEBITS);
|
||||
/* Cr */
|
||||
outptr2[col] = (_JSAMPLE)((ctab[r + R_CR_OFF] + ctab[g + G_CR_OFF] +
|
||||
ctab[b + B_CR_OFF]) >> SCALEBITS);
|
||||
}
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles grayscale output with no conversion.
|
||||
* The source can be either plain grayscale or YCbCr (since Y == gray).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
grayscale_convert(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
register _JSAMPROW inptr;
|
||||
register _JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
int instride = cinfo->input_components;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr = output_buf[0][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr[col] = inptr[0];
|
||||
inptr += instride;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles multi-component colorspaces without conversion.
|
||||
* We assume input_components == num_components.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
null_convert(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
register _JSAMPROW inptr;
|
||||
register _JSAMPROW outptr, outptr0, outptr1, outptr2, outptr3;
|
||||
register JDIMENSION col;
|
||||
register int ci;
|
||||
int nc = cinfo->num_components;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
if (nc == 3) {
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr0 = output_buf[0][output_row];
|
||||
outptr1 = output_buf[1][output_row];
|
||||
outptr2 = output_buf[2][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr0[col] = *inptr++;
|
||||
outptr1[col] = *inptr++;
|
||||
outptr2[col] = *inptr++;
|
||||
}
|
||||
}
|
||||
} else if (nc == 4) {
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr0 = output_buf[0][output_row];
|
||||
outptr1 = output_buf[1][output_row];
|
||||
outptr2 = output_buf[2][output_row];
|
||||
outptr3 = output_buf[3][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr0[col] = *inptr++;
|
||||
outptr1[col] = *inptr++;
|
||||
outptr2[col] = *inptr++;
|
||||
outptr3[col] = *inptr++;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
while (--num_rows >= 0) {
|
||||
/* It seems fastest to make a separate pass for each component. */
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
inptr = *input_buf;
|
||||
outptr = output_buf[ci][output_row];
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr[col] = inptr[ci];
|
||||
inptr += nc;
|
||||
}
|
||||
}
|
||||
input_buf++;
|
||||
output_row++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty method for start_pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
null_method(j_compress_ptr cinfo)
|
||||
{
|
||||
/* no work needed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for input colorspace conversion.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_color_converter(j_compress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert;
|
||||
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE || cinfo->data_precision < 2)
|
||||
#else
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE ||
|
||||
cinfo->data_precision < BITS_IN_JSAMPLE - 3)
|
||||
#endif
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
}
|
||||
|
||||
cconvert = (my_cconvert_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_color_converter));
|
||||
cinfo->cconvert = (struct jpeg_color_converter *)cconvert;
|
||||
/* set start_pass to null method until we find out differently */
|
||||
cconvert->pub.start_pass = null_method;
|
||||
|
||||
/* Make sure input_components agrees with in_color_space */
|
||||
switch (cinfo->in_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->input_components != 1)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
case JCS_EXT_RGB:
|
||||
case JCS_EXT_RGBX:
|
||||
case JCS_EXT_BGR:
|
||||
case JCS_EXT_BGRX:
|
||||
case JCS_EXT_XBGR:
|
||||
case JCS_EXT_XRGB:
|
||||
case JCS_EXT_RGBA:
|
||||
case JCS_EXT_BGRA:
|
||||
case JCS_EXT_ABGR:
|
||||
case JCS_EXT_ARGB:
|
||||
if (cinfo->input_components != rgb_pixelsize[cinfo->in_color_space])
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->input_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
if (cinfo->input_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
default: /* JCS_UNKNOWN can be anything */
|
||||
if (cinfo->input_components < 1)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Check num_components, set conversion method based on requested space.
|
||||
* NOTE: We do not allow any lossy color conversion algorithms in lossless
|
||||
* mode.
|
||||
*/
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless &&
|
||||
cinfo->in_color_space != cinfo->jpeg_color_space)
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
if (cinfo->num_components != 1)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_GRAYSCALE)
|
||||
cconvert->pub._color_convert = grayscale_convert;
|
||||
else if (IsExtRGB(cinfo->in_color_space)) {
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_rgb_gray())
|
||||
cconvert->pub._color_convert = jsimd_rgb_gray_convert;
|
||||
else
|
||||
#endif
|
||||
{
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub._color_convert = rgb_gray_convert;
|
||||
}
|
||||
} else if (cinfo->in_color_space == JCS_YCbCr)
|
||||
cconvert->pub._color_convert = grayscale_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless && !IsExtRGB(cinfo->in_color_space))
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (rgb_red[cinfo->in_color_space] == 0 &&
|
||||
rgb_green[cinfo->in_color_space] == 1 &&
|
||||
rgb_blue[cinfo->in_color_space] == 2 &&
|
||||
rgb_pixelsize[cinfo->in_color_space] == 3) {
|
||||
#if defined(WITH_SIMD) && defined(__mips__)
|
||||
if (jsimd_c_can_null_convert())
|
||||
cconvert->pub._color_convert = jsimd_c_null_convert;
|
||||
else
|
||||
#endif
|
||||
cconvert->pub._color_convert = null_convert;
|
||||
} else if (IsExtRGB(cinfo->in_color_space))
|
||||
cconvert->pub._color_convert = rgb_rgb_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_YCbCr:
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless &&
|
||||
cinfo->in_color_space != cinfo->jpeg_color_space)
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (IsExtRGB(cinfo->in_color_space)) {
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_rgb_ycc())
|
||||
cconvert->pub._color_convert = jsimd_rgb_ycc_convert;
|
||||
else
|
||||
#endif
|
||||
{
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub._color_convert = rgb_ycc_convert;
|
||||
}
|
||||
} else if (cinfo->in_color_space == JCS_YCbCr) {
|
||||
#if defined(WITH_SIMD) && defined(__mips__)
|
||||
if (jsimd_c_can_null_convert())
|
||||
cconvert->pub._color_convert = jsimd_c_null_convert;
|
||||
else
|
||||
#endif
|
||||
cconvert->pub._color_convert = null_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless &&
|
||||
cinfo->in_color_space != cinfo->jpeg_color_space)
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_CMYK) {
|
||||
#if defined(WITH_SIMD) && defined(__mips__)
|
||||
if (jsimd_c_can_null_convert())
|
||||
cconvert->pub._color_convert = jsimd_c_null_convert;
|
||||
else
|
||||
#endif
|
||||
cconvert->pub._color_convert = null_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_YCCK:
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless &&
|
||||
cinfo->in_color_space != cinfo->jpeg_color_space)
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_CMYK) {
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub._color_convert = cmyk_ycck_convert;
|
||||
} else if (cinfo->in_color_space == JCS_YCCK) {
|
||||
#if defined(WITH_SIMD) && defined(__mips__)
|
||||
if (jsimd_c_can_null_convert())
|
||||
cconvert->pub._color_convert = jsimd_c_null_convert;
|
||||
else
|
||||
#endif
|
||||
cconvert->pub._color_convert = null_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
default: /* allow null conversion of JCS_UNKNOWN */
|
||||
if (cinfo->jpeg_color_space != cinfo->in_color_space ||
|
||||
cinfo->num_components != cinfo->input_components)
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#if defined(WITH_SIMD) && defined(__mips__)
|
||||
if (jsimd_c_can_null_convert())
|
||||
cconvert->pub._color_convert = jsimd_c_null_convert;
|
||||
else
|
||||
#endif
|
||||
cconvert->pub._color_convert = null_convert;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 || defined(C_LOSSLESS_SUPPORTED) */
|
||||
748
thirdparty/libjpeg-turbo/src/jcdctmgr.c
vendored
Normal file
748
thirdparty/libjpeg-turbo/src/jcdctmgr.c
vendored
Normal file
@@ -0,0 +1,748 @@
|
||||
/*
|
||||
* jcdctmgr.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 1999-2006, MIYASAKA Masaru.
|
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||||
* Copyright (C) 2011, 2014-2015, 2022, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains the forward-DCT management logic.
|
||||
* This code selects a particular DCT implementation to be used,
|
||||
* and it performs related housekeeping chores including coefficient
|
||||
* quantization.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
#include "jsimddct.h"
|
||||
|
||||
|
||||
/* Private subobject for this module */
|
||||
|
||||
typedef void (*forward_DCT_method_ptr) (DCTELEM *data);
|
||||
typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data);
|
||||
|
||||
typedef void (*convsamp_method_ptr) (_JSAMPARRAY sample_data,
|
||||
JDIMENSION start_col,
|
||||
DCTELEM *workspace);
|
||||
typedef void (*float_convsamp_method_ptr) (_JSAMPARRAY sample_data,
|
||||
JDIMENSION start_col,
|
||||
FAST_FLOAT *workspace);
|
||||
|
||||
typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors,
|
||||
DCTELEM *workspace);
|
||||
typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block,
|
||||
FAST_FLOAT *divisors,
|
||||
FAST_FLOAT *workspace);
|
||||
|
||||
METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *);
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_forward_dct pub; /* public fields */
|
||||
|
||||
/* Pointer to the DCT routine actually in use */
|
||||
forward_DCT_method_ptr dct;
|
||||
convsamp_method_ptr convsamp;
|
||||
quantize_method_ptr quantize;
|
||||
|
||||
/* The actual post-DCT divisors --- not identical to the quant table
|
||||
* entries, because of scaling (especially for an unnormalized DCT).
|
||||
* Each table is given in normal array order.
|
||||
*/
|
||||
DCTELEM *divisors[NUM_QUANT_TBLS];
|
||||
|
||||
/* work area for FDCT subroutine */
|
||||
DCTELEM *workspace;
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
/* Same as above for the floating-point case. */
|
||||
float_DCT_method_ptr float_dct;
|
||||
float_convsamp_method_ptr float_convsamp;
|
||||
float_quantize_method_ptr float_quantize;
|
||||
FAST_FLOAT *float_divisors[NUM_QUANT_TBLS];
|
||||
FAST_FLOAT *float_workspace;
|
||||
#endif
|
||||
} my_fdct_controller;
|
||||
|
||||
typedef my_fdct_controller *my_fdct_ptr;
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
|
||||
/*
|
||||
* Find the highest bit in an integer through binary search.
|
||||
*/
|
||||
|
||||
LOCAL(int)
|
||||
flss(UINT16 val)
|
||||
{
|
||||
int bit;
|
||||
|
||||
bit = 16;
|
||||
|
||||
if (!val)
|
||||
return 0;
|
||||
|
||||
if (!(val & 0xff00)) {
|
||||
bit -= 8;
|
||||
val <<= 8;
|
||||
}
|
||||
if (!(val & 0xf000)) {
|
||||
bit -= 4;
|
||||
val <<= 4;
|
||||
}
|
||||
if (!(val & 0xc000)) {
|
||||
bit -= 2;
|
||||
val <<= 2;
|
||||
}
|
||||
if (!(val & 0x8000)) {
|
||||
bit -= 1;
|
||||
val <<= 1;
|
||||
}
|
||||
|
||||
return bit;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Compute values to do a division using reciprocal.
|
||||
*
|
||||
* This implementation is based on an algorithm described in
|
||||
* "Optimizing subroutines in assembly language:
|
||||
* An optimization guide for x86 platforms" (https://agner.org/optimize).
|
||||
* More information about the basic algorithm can be found in
|
||||
* the paper "Integer Division Using Reciprocals" by Robert Alverson.
|
||||
*
|
||||
* The basic idea is to replace x/d by x * d^-1. In order to store
|
||||
* d^-1 with enough precision we shift it left a few places. It turns
|
||||
* out that this algoright gives just enough precision, and also fits
|
||||
* into DCTELEM:
|
||||
*
|
||||
* b = (the number of significant bits in divisor) - 1
|
||||
* r = (word size) + b
|
||||
* f = 2^r / divisor
|
||||
*
|
||||
* f will not be an integer for most cases, so we need to compensate
|
||||
* for the rounding error introduced:
|
||||
*
|
||||
* no fractional part:
|
||||
*
|
||||
* result = input >> r
|
||||
*
|
||||
* fractional part of f < 0.5:
|
||||
*
|
||||
* round f down to nearest integer
|
||||
* result = ((input + 1) * f) >> r
|
||||
*
|
||||
* fractional part of f > 0.5:
|
||||
*
|
||||
* round f up to nearest integer
|
||||
* result = (input * f) >> r
|
||||
*
|
||||
* This is the original algorithm that gives truncated results. But we
|
||||
* want properly rounded results, so we replace "input" with
|
||||
* "input + divisor/2".
|
||||
*
|
||||
* In order to allow SIMD implementations we also tweak the values to
|
||||
* allow the same calculation to be made at all times:
|
||||
*
|
||||
* dctbl[0] = f rounded to nearest integer
|
||||
* dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
|
||||
* dctbl[2] = 1 << ((word size) * 2 - r)
|
||||
* dctbl[3] = r - (word size)
|
||||
*
|
||||
* dctbl[2] is for stupid instruction sets where the shift operation
|
||||
* isn't member wise (e.g. MMX).
|
||||
*
|
||||
* The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
|
||||
* is that most SIMD implementations have a "multiply and store top
|
||||
* half" operation.
|
||||
*
|
||||
* Lastly, we store each of the values in their own table instead
|
||||
* of in a consecutive manner, yet again in order to allow SIMD
|
||||
* routines.
|
||||
*/
|
||||
|
||||
LOCAL(int)
|
||||
compute_reciprocal(UINT16 divisor, DCTELEM *dtbl)
|
||||
{
|
||||
UDCTELEM2 fq, fr;
|
||||
UDCTELEM c;
|
||||
int b, r;
|
||||
|
||||
if (divisor == 1) {
|
||||
/* divisor == 1 means unquantized, so these reciprocal/correction/shift
|
||||
* values will cause the C quantization algorithm to act like the
|
||||
* identity function. Since only the C quantization algorithm is used in
|
||||
* these cases, the scale value is irrelevant.
|
||||
*/
|
||||
dtbl[DCTSIZE2 * 0] = (DCTELEM)1; /* reciprocal */
|
||||
dtbl[DCTSIZE2 * 1] = (DCTELEM)0; /* correction */
|
||||
dtbl[DCTSIZE2 * 2] = (DCTELEM)1; /* scale */
|
||||
dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8); /* shift */
|
||||
return 0;
|
||||
}
|
||||
|
||||
b = flss(divisor) - 1;
|
||||
r = sizeof(DCTELEM) * 8 + b;
|
||||
|
||||
fq = ((UDCTELEM2)1 << r) / divisor;
|
||||
fr = ((UDCTELEM2)1 << r) % divisor;
|
||||
|
||||
c = divisor / 2; /* for rounding */
|
||||
|
||||
if (fr == 0) { /* divisor is power of two */
|
||||
/* fq will be one bit too large to fit in DCTELEM, so adjust */
|
||||
fq >>= 1;
|
||||
r--;
|
||||
} else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */
|
||||
c++;
|
||||
} else { /* fractional part is > 0.5 */
|
||||
fq++;
|
||||
}
|
||||
|
||||
dtbl[DCTSIZE2 * 0] = (DCTELEM)fq; /* reciprocal */
|
||||
dtbl[DCTSIZE2 * 1] = (DCTELEM)c; /* correction + roundfactor */
|
||||
#ifdef WITH_SIMD
|
||||
dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */
|
||||
#else
|
||||
dtbl[DCTSIZE2 * 2] = 1;
|
||||
#endif
|
||||
dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */
|
||||
|
||||
if (r <= 16) return 0;
|
||||
else return 1;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
* Verify that all referenced Q-tables are present, and set up
|
||||
* the divisor table for each one.
|
||||
* In the current implementation, DCT of all components is done during
|
||||
* the first pass, even if only some components will be output in the
|
||||
* first scan. Hence all components should be examined here.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_fdctmgr(j_compress_ptr cinfo)
|
||||
{
|
||||
my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
|
||||
int ci, qtblno, i;
|
||||
jpeg_component_info *compptr;
|
||||
JQUANT_TBL *qtbl;
|
||||
DCTELEM *dtbl;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
qtblno = compptr->quant_tbl_no;
|
||||
/* Make sure specified quantization table is present */
|
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
||||
qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
||||
/* Compute divisors for this quant table */
|
||||
/* We may do this more than once for same table, but it's not a big deal */
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
/* For LL&M IDCT method, divisors are equal to raw quantization
|
||||
* coefficients multiplied by 8 (to counteract scaling).
|
||||
*/
|
||||
if (fdct->divisors[qtblno] == NULL) {
|
||||
fdct->divisors[qtblno] = (DCTELEM *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(DCTSIZE2 * 4) * sizeof(DCTELEM));
|
||||
}
|
||||
dtbl = fdct->divisors[qtblno];
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#ifdef WITH_SIMD
|
||||
if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) &&
|
||||
fdct->quantize == jsimd_quantize)
|
||||
fdct->quantize = quantize;
|
||||
#else
|
||||
compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]);
|
||||
#endif
|
||||
#else
|
||||
dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3;
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
{
|
||||
/* For AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* We apply a further scale factor of 8.
|
||||
*/
|
||||
#define CONST_BITS 14
|
||||
static const INT16 aanscales[DCTSIZE2] = {
|
||||
/* precomputed values scaled up by 14 bits */
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
||||
};
|
||||
SHIFT_TEMPS
|
||||
|
||||
if (fdct->divisors[qtblno] == NULL) {
|
||||
fdct->divisors[qtblno] = (DCTELEM *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(DCTSIZE2 * 4) * sizeof(DCTELEM));
|
||||
}
|
||||
dtbl = fdct->divisors[qtblno];
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#ifdef WITH_SIMD
|
||||
if (!compute_reciprocal(
|
||||
DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
|
||||
(JLONG)aanscales[i]),
|
||||
CONST_BITS - 3), &dtbl[i]) &&
|
||||
fdct->quantize == jsimd_quantize)
|
||||
fdct->quantize = quantize;
|
||||
#else
|
||||
compute_reciprocal(
|
||||
DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
|
||||
(JLONG)aanscales[i]),
|
||||
CONST_BITS-3), &dtbl[i]);
|
||||
#endif
|
||||
#else
|
||||
dtbl[i] = (DCTELEM)
|
||||
DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
|
||||
(JLONG)aanscales[i]),
|
||||
CONST_BITS - 3);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
{
|
||||
/* For float AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* We apply a further scale factor of 8.
|
||||
* What's actually stored is 1/divisor so that the inner loop can
|
||||
* use a multiplication rather than a division.
|
||||
*/
|
||||
FAST_FLOAT *fdtbl;
|
||||
int row, col;
|
||||
static const double aanscalefactor[DCTSIZE] = {
|
||||
1.0, 1.387039845, 1.306562965, 1.175875602,
|
||||
1.0, 0.785694958, 0.541196100, 0.275899379
|
||||
};
|
||||
|
||||
if (fdct->float_divisors[qtblno] == NULL) {
|
||||
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * sizeof(FAST_FLOAT));
|
||||
}
|
||||
fdtbl = fdct->float_divisors[qtblno];
|
||||
i = 0;
|
||||
for (row = 0; row < DCTSIZE; row++) {
|
||||
for (col = 0; col < DCTSIZE; col++) {
|
||||
fdtbl[i] = (FAST_FLOAT)
|
||||
(1.0 / (((double)qtbl->quantval[i] *
|
||||
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Load data into workspace, applying unsigned->signed conversion.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
convsamp(_JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace)
|
||||
{
|
||||
register DCTELEM *workspaceptr;
|
||||
register _JSAMPROW elemptr;
|
||||
register int elemr;
|
||||
|
||||
workspaceptr = workspace;
|
||||
for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
||||
elemptr = sample_data[elemr] + start_col;
|
||||
|
||||
#if DCTSIZE == 8 /* unroll the inner loop */
|
||||
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
|
||||
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
|
||||
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
|
||||
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
|
||||
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
|
||||
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
|
||||
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
|
||||
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
|
||||
#else
|
||||
{
|
||||
register int elemc;
|
||||
for (elemc = DCTSIZE; elemc > 0; elemc--)
|
||||
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Quantize/descale the coefficients, and store into coef_blocks[].
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
|
||||
{
|
||||
int i;
|
||||
DCTELEM temp;
|
||||
JCOEFPTR output_ptr = coef_block;
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
|
||||
UDCTELEM recip, corr;
|
||||
int shift;
|
||||
UDCTELEM2 product;
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
temp = workspace[i];
|
||||
recip = divisors[i + DCTSIZE2 * 0];
|
||||
corr = divisors[i + DCTSIZE2 * 1];
|
||||
shift = divisors[i + DCTSIZE2 * 3];
|
||||
|
||||
if (temp < 0) {
|
||||
temp = -temp;
|
||||
product = (UDCTELEM2)(temp + corr) * recip;
|
||||
product >>= shift + sizeof(DCTELEM) * 8;
|
||||
temp = (DCTELEM)product;
|
||||
temp = -temp;
|
||||
} else {
|
||||
product = (UDCTELEM2)(temp + corr) * recip;
|
||||
product >>= shift + sizeof(DCTELEM) * 8;
|
||||
temp = (DCTELEM)product;
|
||||
}
|
||||
output_ptr[i] = (JCOEF)temp;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
register DCTELEM qval;
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
qval = divisors[i];
|
||||
temp = workspace[i];
|
||||
/* Divide the coefficient value by qval, ensuring proper rounding.
|
||||
* Since C does not specify the direction of rounding for negative
|
||||
* quotients, we have to force the dividend positive for portability.
|
||||
*
|
||||
* In most files, at least half of the output values will be zero
|
||||
* (at default quantization settings, more like three-quarters...)
|
||||
* so we should ensure that this case is fast. On many machines,
|
||||
* a comparison is enough cheaper than a divide to make a special test
|
||||
* a win. Since both inputs will be nonnegative, we need only test
|
||||
* for a < b to discover whether a/b is 0.
|
||||
* If your machine's division is fast enough, define FAST_DIVIDE.
|
||||
*/
|
||||
#ifdef FAST_DIVIDE
|
||||
#define DIVIDE_BY(a, b) a /= b
|
||||
#else
|
||||
#define DIVIDE_BY(a, b) if (a >= b) a /= b; else a = 0
|
||||
#endif
|
||||
if (temp < 0) {
|
||||
temp = -temp;
|
||||
temp += qval >> 1; /* for rounding */
|
||||
DIVIDE_BY(temp, qval);
|
||||
temp = -temp;
|
||||
} else {
|
||||
temp += qval >> 1; /* for rounding */
|
||||
DIVIDE_BY(temp, qval);
|
||||
}
|
||||
output_ptr[i] = (JCOEF)temp;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Perform forward DCT on one or more blocks of a component.
|
||||
*
|
||||
* The input samples are taken from the sample_data[] array starting at
|
||||
* position start_row/start_col, and moving to the right for any additional
|
||||
* blocks. The quantized coefficients are returned in coef_blocks[].
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks)
|
||||
/* This version is used for integer DCT implementations. */
|
||||
{
|
||||
/* This routine is heavily used, so it's worth coding it tightly. */
|
||||
my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
|
||||
DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no];
|
||||
DCTELEM *workspace;
|
||||
JDIMENSION bi;
|
||||
|
||||
/* Make sure the compiler doesn't look up these every pass */
|
||||
forward_DCT_method_ptr do_dct = fdct->dct;
|
||||
convsamp_method_ptr do_convsamp = fdct->convsamp;
|
||||
quantize_method_ptr do_quantize = fdct->quantize;
|
||||
workspace = fdct->workspace;
|
||||
|
||||
sample_data += start_row; /* fold in the vertical offset once */
|
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
||||
/* Load data into workspace, applying unsigned->signed conversion */
|
||||
(*do_convsamp) (sample_data, start_col, workspace);
|
||||
|
||||
/* Perform the DCT */
|
||||
(*do_dct) (workspace);
|
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||||
(*do_quantize) (coef_blocks[bi], divisors, workspace);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
METHODDEF(void)
|
||||
convsamp_float(_JSAMPARRAY sample_data, JDIMENSION start_col,
|
||||
FAST_FLOAT *workspace)
|
||||
{
|
||||
register FAST_FLOAT *workspaceptr;
|
||||
register _JSAMPROW elemptr;
|
||||
register int elemr;
|
||||
|
||||
workspaceptr = workspace;
|
||||
for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
||||
elemptr = sample_data[elemr] + start_col;
|
||||
#if DCTSIZE == 8 /* unroll the inner loop */
|
||||
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
|
||||
#else
|
||||
{
|
||||
register int elemc;
|
||||
for (elemc = DCTSIZE; elemc > 0; elemc--)
|
||||
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors,
|
||||
FAST_FLOAT *workspace)
|
||||
{
|
||||
register FAST_FLOAT temp;
|
||||
register int i;
|
||||
register JCOEFPTR output_ptr = coef_block;
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
/* Apply the quantization and scaling factor */
|
||||
temp = workspace[i] * divisors[i];
|
||||
|
||||
/* Round to nearest integer.
|
||||
* Since C does not specify the direction of rounding for negative
|
||||
* quotients, we have to force the dividend positive for portability.
|
||||
* The maximum coefficient size is +-16K (for 12-bit data), so this
|
||||
* code should work for either 16-bit or 32-bit ints.
|
||||
*/
|
||||
output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks)
|
||||
/* This version is used for floating-point DCT implementations. */
|
||||
{
|
||||
/* This routine is heavily used, so it's worth coding it tightly. */
|
||||
my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
|
||||
FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
||||
FAST_FLOAT *workspace;
|
||||
JDIMENSION bi;
|
||||
|
||||
|
||||
/* Make sure the compiler doesn't look up these every pass */
|
||||
float_DCT_method_ptr do_dct = fdct->float_dct;
|
||||
float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
|
||||
float_quantize_method_ptr do_quantize = fdct->float_quantize;
|
||||
workspace = fdct->float_workspace;
|
||||
|
||||
sample_data += start_row; /* fold in the vertical offset once */
|
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
||||
/* Load data into workspace, applying unsigned->signed conversion */
|
||||
(*do_convsamp) (sample_data, start_col, workspace);
|
||||
|
||||
/* Perform the DCT */
|
||||
(*do_dct) (workspace);
|
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||||
(*do_quantize) (coef_blocks[bi], divisors, workspace);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize FDCT manager.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_forward_dct(j_compress_ptr cinfo)
|
||||
{
|
||||
my_fdct_ptr fdct;
|
||||
int i;
|
||||
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
fdct = (my_fdct_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_fdct_controller));
|
||||
cinfo->fdct = (struct jpeg_forward_dct *)fdct;
|
||||
fdct->pub.start_pass = start_pass_fdctmgr;
|
||||
|
||||
/* First determine the DCT... */
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
fdct->pub._forward_DCT = forward_DCT;
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_fdct_islow())
|
||||
fdct->dct = jsimd_fdct_islow;
|
||||
else
|
||||
#endif
|
||||
fdct->dct = _jpeg_fdct_islow;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
fdct->pub._forward_DCT = forward_DCT;
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_fdct_ifast())
|
||||
fdct->dct = jsimd_fdct_ifast;
|
||||
else
|
||||
#endif
|
||||
fdct->dct = _jpeg_fdct_ifast;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
fdct->pub._forward_DCT = forward_DCT_float;
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_fdct_float())
|
||||
fdct->float_dct = jsimd_fdct_float;
|
||||
else
|
||||
#endif
|
||||
fdct->float_dct = jpeg_fdct_float;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
|
||||
/* ...then the supporting stages. */
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
#endif
|
||||
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_convsamp())
|
||||
fdct->convsamp = jsimd_convsamp;
|
||||
else
|
||||
#endif
|
||||
fdct->convsamp = convsamp;
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_quantize())
|
||||
fdct->quantize = jsimd_quantize;
|
||||
else
|
||||
#endif
|
||||
fdct->quantize = quantize;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_convsamp_float())
|
||||
fdct->float_convsamp = jsimd_convsamp_float;
|
||||
else
|
||||
#endif
|
||||
fdct->float_convsamp = convsamp_float;
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_quantize_float())
|
||||
fdct->float_quantize = jsimd_quantize_float;
|
||||
else
|
||||
#endif
|
||||
fdct->float_quantize = quantize_float;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Allocate workspace memory */
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
if (cinfo->dct_method == JDCT_FLOAT)
|
||||
fdct->float_workspace = (FAST_FLOAT *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(FAST_FLOAT) * DCTSIZE2);
|
||||
else
|
||||
#endif
|
||||
fdct->workspace = (DCTELEM *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(DCTELEM) * DCTSIZE2);
|
||||
|
||||
/* Mark divisor tables unallocated */
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
fdct->divisors[i] = NULL;
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
fdct->float_divisors[i] = NULL;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
1175
thirdparty/libjpeg-turbo/src/jchuff.c
vendored
Normal file
1175
thirdparty/libjpeg-turbo/src/jchuff.c
vendored
Normal file
File diff suppressed because it is too large
Load Diff
44
thirdparty/libjpeg-turbo/src/jchuff.h
vendored
Normal file
44
thirdparty/libjpeg-turbo/src/jchuff.h
vendored
Normal file
@@ -0,0 +1,44 @@
|
||||
/*
|
||||
* jchuff.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains declarations for Huffman entropy encoding routines
|
||||
* that are shared between the sequential encoder (jchuff.c) and the
|
||||
* progressive encoder (jcphuff.c). No other modules need to see these.
|
||||
*/
|
||||
|
||||
/* The legal range of a DCT coefficient is
|
||||
* -1024 .. +1023 for 8-bit data;
|
||||
* -16384 .. +16383 for 12-bit data.
|
||||
* Hence the magnitude should always fit in 10 or 14 bits respectively.
|
||||
*/
|
||||
|
||||
/* The progressive Huffman encoder uses an unsigned 16-bit data type to store
|
||||
* absolute values of coefficients, because it is possible to inject a
|
||||
* coefficient value of -32768 into the encoder by attempting to transform a
|
||||
* malformed 12-bit JPEG image, and the absolute value of -32768 would overflow
|
||||
* a signed 16-bit integer.
|
||||
*/
|
||||
typedef unsigned short UJCOEF;
|
||||
|
||||
/* Derived data constructed for each Huffman table */
|
||||
|
||||
typedef struct {
|
||||
unsigned int ehufco[256]; /* code for each symbol */
|
||||
char ehufsi[256]; /* length of code for each symbol */
|
||||
/* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
|
||||
} c_derived_tbl;
|
||||
|
||||
/* Expand a Huffman table definition into the derived format */
|
||||
EXTERN(void) jpeg_make_c_derived_tbl(j_compress_ptr cinfo, boolean isDC,
|
||||
int tblno, c_derived_tbl **pdtbl);
|
||||
|
||||
/* Generate an optimal table definition given the specified counts */
|
||||
EXTERN(void) jpeg_gen_optimal_table(j_compress_ptr cinfo, JHUFF_TBL *htbl,
|
||||
long freq[]);
|
||||
105
thirdparty/libjpeg-turbo/src/jcicc.c
vendored
Normal file
105
thirdparty/libjpeg-turbo/src/jcicc.c
vendored
Normal file
@@ -0,0 +1,105 @@
|
||||
/*
|
||||
* jcicc.c
|
||||
*
|
||||
* Copyright (C) 1997-1998, Thomas G. Lane, Todd Newman.
|
||||
* Copyright (C) 2017, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file provides code to write International Color Consortium (ICC) device
|
||||
* profiles embedded in JFIF JPEG image files. The ICC has defined a standard
|
||||
* for including such data in JPEG "APP2" markers. The code given here does
|
||||
* not know anything about the internal structure of the ICC profile data; it
|
||||
* just knows how to embed the profile data in a JPEG file while writing it.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
|
||||
/*
|
||||
* Since an ICC profile can be larger than the maximum size of a JPEG marker
|
||||
* (64K), we need provisions to split it into multiple markers. The format
|
||||
* defined by the ICC specifies one or more APP2 markers containing the
|
||||
* following data:
|
||||
* Identifying string ASCII "ICC_PROFILE\0" (12 bytes)
|
||||
* Marker sequence number 1 for first APP2, 2 for next, etc (1 byte)
|
||||
* Number of markers Total number of APP2's used (1 byte)
|
||||
* Profile data (remainder of APP2 data)
|
||||
* Decoders should use the marker sequence numbers to reassemble the profile,
|
||||
* rather than assuming that the APP2 markers appear in the correct sequence.
|
||||
*/
|
||||
|
||||
#define ICC_MARKER (JPEG_APP0 + 2) /* JPEG marker code for ICC */
|
||||
#define ICC_OVERHEAD_LEN 14 /* size of non-profile data in APP2 */
|
||||
#define MAX_BYTES_IN_MARKER 65533 /* maximum data len of a JPEG marker */
|
||||
#define MAX_DATA_BYTES_IN_MARKER (MAX_BYTES_IN_MARKER - ICC_OVERHEAD_LEN)
|
||||
|
||||
|
||||
/*
|
||||
* This routine writes the given ICC profile data into a JPEG file. It *must*
|
||||
* be called AFTER calling jpeg_start_compress() and BEFORE the first call to
|
||||
* jpeg_write_scanlines(). (This ordering ensures that the APP2 marker(s) will
|
||||
* appear after the SOI and JFIF or Adobe markers, but before all else.)
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_icc_profile(j_compress_ptr cinfo, const JOCTET *icc_data_ptr,
|
||||
unsigned int icc_data_len)
|
||||
{
|
||||
unsigned int num_markers; /* total number of markers we'll write */
|
||||
int cur_marker = 1; /* per spec, counting starts at 1 */
|
||||
unsigned int length; /* number of bytes to write in this marker */
|
||||
|
||||
if (icc_data_ptr == NULL || icc_data_len == 0)
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
if (cinfo->global_state < CSTATE_SCANNING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* Calculate the number of markers we'll need, rounding up of course */
|
||||
num_markers = icc_data_len / MAX_DATA_BYTES_IN_MARKER;
|
||||
if (num_markers * MAX_DATA_BYTES_IN_MARKER != icc_data_len)
|
||||
num_markers++;
|
||||
|
||||
while (icc_data_len > 0) {
|
||||
/* length of profile to put in this marker */
|
||||
length = icc_data_len;
|
||||
if (length > MAX_DATA_BYTES_IN_MARKER)
|
||||
length = MAX_DATA_BYTES_IN_MARKER;
|
||||
icc_data_len -= length;
|
||||
|
||||
/* Write the JPEG marker header (APP2 code and marker length) */
|
||||
jpeg_write_m_header(cinfo, ICC_MARKER,
|
||||
(unsigned int)(length + ICC_OVERHEAD_LEN));
|
||||
|
||||
/* Write the marker identifying string "ICC_PROFILE" (null-terminated). We
|
||||
* code it in this less-than-transparent way so that the code works even if
|
||||
* the local character set is not ASCII.
|
||||
*/
|
||||
jpeg_write_m_byte(cinfo, 0x49);
|
||||
jpeg_write_m_byte(cinfo, 0x43);
|
||||
jpeg_write_m_byte(cinfo, 0x43);
|
||||
jpeg_write_m_byte(cinfo, 0x5F);
|
||||
jpeg_write_m_byte(cinfo, 0x50);
|
||||
jpeg_write_m_byte(cinfo, 0x52);
|
||||
jpeg_write_m_byte(cinfo, 0x4F);
|
||||
jpeg_write_m_byte(cinfo, 0x46);
|
||||
jpeg_write_m_byte(cinfo, 0x49);
|
||||
jpeg_write_m_byte(cinfo, 0x4C);
|
||||
jpeg_write_m_byte(cinfo, 0x45);
|
||||
jpeg_write_m_byte(cinfo, 0x0);
|
||||
|
||||
/* Add the sequencing info */
|
||||
jpeg_write_m_byte(cinfo, cur_marker);
|
||||
jpeg_write_m_byte(cinfo, (int)num_markers);
|
||||
|
||||
/* Add the profile data */
|
||||
while (length--) {
|
||||
jpeg_write_m_byte(cinfo, *icc_data_ptr);
|
||||
icc_data_ptr++;
|
||||
}
|
||||
cur_marker++;
|
||||
}
|
||||
}
|
||||
149
thirdparty/libjpeg-turbo/src/jcinit.c
vendored
Normal file
149
thirdparty/libjpeg-turbo/src/jcinit.c
vendored
Normal file
@@ -0,0 +1,149 @@
|
||||
/*
|
||||
* jcinit.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2020, 2022, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains initialization logic for the JPEG compressor.
|
||||
* This routine is in charge of selecting the modules to be executed and
|
||||
* making an initialization call to each one.
|
||||
*
|
||||
* Logically, this code belongs in jcmaster.c. It's split out because
|
||||
* linking this routine implies linking the entire compression library.
|
||||
* For a transcoding-only application, we want to be able to use jcmaster.c
|
||||
* without linking in the whole library.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jpegapicomp.h"
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of compression modules.
|
||||
* This is done once at the start of processing an image. We determine
|
||||
* which modules will be used and give them appropriate initialization calls.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_compress_master(j_compress_ptr cinfo)
|
||||
{
|
||||
/* Initialize master control (includes parameter checking/processing) */
|
||||
jinit_c_master_control(cinfo, FALSE /* full compression */);
|
||||
|
||||
/* Preprocessing */
|
||||
if (!cinfo->raw_data_in) {
|
||||
if (cinfo->data_precision <= 8) {
|
||||
jinit_color_converter(cinfo);
|
||||
jinit_downsampler(cinfo);
|
||||
jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
} else if (cinfo->data_precision <= 12) {
|
||||
j12init_color_converter(cinfo);
|
||||
j12init_downsampler(cinfo);
|
||||
j12init_c_prep_controller(cinfo,
|
||||
FALSE /* never need full buffer here */);
|
||||
} else {
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
j16init_color_converter(cinfo);
|
||||
j16init_downsampler(cinfo);
|
||||
j16init_c_prep_controller(cinfo,
|
||||
FALSE /* never need full buffer here */);
|
||||
#else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
if (cinfo->master->lossless) {
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
/* Prediction, sample differencing, and point transform */
|
||||
if (cinfo->data_precision <= 8)
|
||||
jinit_lossless_compressor(cinfo);
|
||||
else if (cinfo->data_precision <= 12)
|
||||
j12init_lossless_compressor(cinfo);
|
||||
else
|
||||
j16init_lossless_compressor(cinfo);
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
} else {
|
||||
jinit_lhuff_encoder(cinfo);
|
||||
}
|
||||
|
||||
/* Need a full-image difference buffer in any multi-pass mode. */
|
||||
if (cinfo->data_precision <= 8)
|
||||
jinit_c_diff_controller(cinfo, (boolean)(cinfo->num_scans > 1 ||
|
||||
cinfo->optimize_coding));
|
||||
else if (cinfo->data_precision <= 12)
|
||||
j12init_c_diff_controller(cinfo, (boolean)(cinfo->num_scans > 1 ||
|
||||
cinfo->optimize_coding));
|
||||
else
|
||||
j16init_c_diff_controller(cinfo, (boolean)(cinfo->num_scans > 1 ||
|
||||
cinfo->optimize_coding));
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
/* Forward DCT */
|
||||
if (cinfo->data_precision == 8)
|
||||
jinit_forward_dct(cinfo);
|
||||
else if (cinfo->data_precision == 12)
|
||||
j12init_forward_dct(cinfo);
|
||||
else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
#ifdef C_ARITH_CODING_SUPPORTED
|
||||
jinit_arith_encoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
#endif
|
||||
} else {
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
jinit_phuff_encoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else
|
||||
jinit_huff_encoder(cinfo);
|
||||
}
|
||||
|
||||
/* Need a full-image coefficient buffer in any multi-pass mode. */
|
||||
if (cinfo->data_precision == 12)
|
||||
j12init_c_coef_controller(cinfo, (boolean)(cinfo->num_scans > 1 ||
|
||||
cinfo->optimize_coding));
|
||||
else
|
||||
jinit_c_coef_controller(cinfo, (boolean)(cinfo->num_scans > 1 ||
|
||||
cinfo->optimize_coding));
|
||||
}
|
||||
|
||||
if (cinfo->data_precision <= 8)
|
||||
jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
else if (cinfo->data_precision <= 12)
|
||||
j12init_c_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
else
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
j16init_c_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
#else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
#endif
|
||||
|
||||
jinit_marker_writer(cinfo);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr)cinfo);
|
||||
|
||||
/* Write the datastream header (SOI) immediately.
|
||||
* Frame and scan headers are postponed till later.
|
||||
* This lets application insert special markers after the SOI.
|
||||
*/
|
||||
(*cinfo->marker->write_file_header) (cinfo);
|
||||
}
|
||||
186
thirdparty/libjpeg-turbo/src/jcmainct.c
vendored
Normal file
186
thirdparty/libjpeg-turbo/src/jcmainct.c
vendored
Normal file
@@ -0,0 +1,186 @@
|
||||
/*
|
||||
* jcmainct.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2022, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains the main buffer controller for compression.
|
||||
* The main buffer lies between the pre-processor and the JPEG
|
||||
* compressor proper; it holds downsampled data in the JPEG colorspace.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16 || defined(C_LOSSLESS_SUPPORTED)
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_main_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION cur_iMCU_row; /* number of current iMCU row */
|
||||
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
|
||||
boolean suspended; /* remember if we suspended output */
|
||||
J_BUF_MODE pass_mode; /* current operating mode */
|
||||
|
||||
/* If using just a strip buffer, this points to the entire set of buffers
|
||||
* (we allocate one for each component). In the full-image case, this
|
||||
* points to the currently accessible strips of the virtual arrays.
|
||||
*/
|
||||
_JSAMPARRAY buffer[MAX_COMPONENTS];
|
||||
} my_main_controller;
|
||||
|
||||
typedef my_main_controller *my_main_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(void) process_data_simple_main(j_compress_ptr cinfo,
|
||||
_JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail);
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_main(j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
|
||||
|
||||
/* Do nothing in raw-data mode. */
|
||||
if (cinfo->raw_data_in)
|
||||
return;
|
||||
|
||||
if (pass_mode != JBUF_PASS_THRU)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
main_ptr->cur_iMCU_row = 0; /* initialize counters */
|
||||
main_ptr->rowgroup_ctr = 0;
|
||||
main_ptr->suspended = FALSE;
|
||||
main_ptr->pass_mode = pass_mode; /* save mode for use by process_data */
|
||||
main_ptr->pub._process_data = process_data_simple_main;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This routine handles the simple pass-through mode,
|
||||
* where we have only a strip buffer.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_simple_main(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)
|
||||
{
|
||||
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
|
||||
JDIMENSION data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
|
||||
while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) {
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (main_ptr->rowgroup_ctr < data_unit)
|
||||
(*cinfo->prep->_pre_process_data) (cinfo, input_buf, in_row_ctr,
|
||||
in_rows_avail, main_ptr->buffer,
|
||||
&main_ptr->rowgroup_ctr, data_unit);
|
||||
|
||||
/* If we don't have a full iMCU row buffered, return to application for
|
||||
* more data. Note that preprocessor will always pad to fill the iMCU row
|
||||
* at the bottom of the image.
|
||||
*/
|
||||
if (main_ptr->rowgroup_ctr != data_unit)
|
||||
return;
|
||||
|
||||
/* Send the completed row to the compressor */
|
||||
if (!(*cinfo->coef->_compress_data) (cinfo, main_ptr->buffer)) {
|
||||
/* If compressor did not consume the whole row, then we must need to
|
||||
* suspend processing and return to the application. In this situation
|
||||
* we pretend we didn't yet consume the last input row; otherwise, if
|
||||
* it happened to be the last row of the image, the application would
|
||||
* think we were done.
|
||||
*/
|
||||
if (!main_ptr->suspended) {
|
||||
(*in_row_ctr)--;
|
||||
main_ptr->suspended = TRUE;
|
||||
}
|
||||
return;
|
||||
}
|
||||
/* We did finish the row. Undo our little suspension hack if a previous
|
||||
* call suspended; then mark the main buffer empty.
|
||||
*/
|
||||
if (main_ptr->suspended) {
|
||||
(*in_row_ctr)++;
|
||||
main_ptr->suspended = FALSE;
|
||||
}
|
||||
main_ptr->rowgroup_ctr = 0;
|
||||
main_ptr->cur_iMCU_row++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_c_main_controller(j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_main_ptr main_ptr;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE || cinfo->data_precision < 2)
|
||||
#else
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE ||
|
||||
cinfo->data_precision < BITS_IN_JSAMPLE - 3)
|
||||
#endif
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
}
|
||||
|
||||
main_ptr = (my_main_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_main_controller));
|
||||
cinfo->main = (struct jpeg_c_main_controller *)main_ptr;
|
||||
main_ptr->pub.start_pass = start_pass_main;
|
||||
|
||||
/* We don't need to create a buffer in raw-data mode. */
|
||||
if (cinfo->raw_data_in)
|
||||
return;
|
||||
|
||||
/* Create the buffer. It holds downsampled data, so each component
|
||||
* may be of a different size.
|
||||
*/
|
||||
if (need_full_buffer) {
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
} else {
|
||||
/* Allocate a strip buffer for each component */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
main_ptr->buffer[ci] = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
compptr->width_in_blocks * data_unit,
|
||||
(JDIMENSION)(compptr->v_samp_factor * data_unit));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 || defined(C_LOSSLESS_SUPPORTED) */
|
||||
670
thirdparty/libjpeg-turbo/src/jcmarker.c
vendored
Normal file
670
thirdparty/libjpeg-turbo/src/jcmarker.c
vendored
Normal file
@@ -0,0 +1,670 @@
|
||||
/*
|
||||
* jcmarker.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* Modified 2003-2010 by Guido Vollbeding.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2010, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains routines to write JPEG datastream markers.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jpegapicomp.h"
|
||||
|
||||
|
||||
typedef enum { /* JPEG marker codes */
|
||||
M_SOF0 = 0xc0,
|
||||
M_SOF1 = 0xc1,
|
||||
M_SOF2 = 0xc2,
|
||||
M_SOF3 = 0xc3,
|
||||
|
||||
M_SOF5 = 0xc5,
|
||||
M_SOF6 = 0xc6,
|
||||
M_SOF7 = 0xc7,
|
||||
|
||||
M_JPG = 0xc8,
|
||||
M_SOF9 = 0xc9,
|
||||
M_SOF10 = 0xca,
|
||||
M_SOF11 = 0xcb,
|
||||
|
||||
M_SOF13 = 0xcd,
|
||||
M_SOF14 = 0xce,
|
||||
M_SOF15 = 0xcf,
|
||||
|
||||
M_DHT = 0xc4,
|
||||
|
||||
M_DAC = 0xcc,
|
||||
|
||||
M_RST0 = 0xd0,
|
||||
M_RST1 = 0xd1,
|
||||
M_RST2 = 0xd2,
|
||||
M_RST3 = 0xd3,
|
||||
M_RST4 = 0xd4,
|
||||
M_RST5 = 0xd5,
|
||||
M_RST6 = 0xd6,
|
||||
M_RST7 = 0xd7,
|
||||
|
||||
M_SOI = 0xd8,
|
||||
M_EOI = 0xd9,
|
||||
M_SOS = 0xda,
|
||||
M_DQT = 0xdb,
|
||||
M_DNL = 0xdc,
|
||||
M_DRI = 0xdd,
|
||||
M_DHP = 0xde,
|
||||
M_EXP = 0xdf,
|
||||
|
||||
M_APP0 = 0xe0,
|
||||
M_APP1 = 0xe1,
|
||||
M_APP2 = 0xe2,
|
||||
M_APP3 = 0xe3,
|
||||
M_APP4 = 0xe4,
|
||||
M_APP5 = 0xe5,
|
||||
M_APP6 = 0xe6,
|
||||
M_APP7 = 0xe7,
|
||||
M_APP8 = 0xe8,
|
||||
M_APP9 = 0xe9,
|
||||
M_APP10 = 0xea,
|
||||
M_APP11 = 0xeb,
|
||||
M_APP12 = 0xec,
|
||||
M_APP13 = 0xed,
|
||||
M_APP14 = 0xee,
|
||||
M_APP15 = 0xef,
|
||||
|
||||
M_JPG0 = 0xf0,
|
||||
M_JPG13 = 0xfd,
|
||||
M_COM = 0xfe,
|
||||
|
||||
M_TEM = 0x01,
|
||||
|
||||
M_ERROR = 0x100
|
||||
} JPEG_MARKER;
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_marker_writer pub; /* public fields */
|
||||
|
||||
unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */
|
||||
} my_marker_writer;
|
||||
|
||||
typedef my_marker_writer *my_marker_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Basic output routines.
|
||||
*
|
||||
* Note that we do not support suspension while writing a marker.
|
||||
* Therefore, an application using suspension must ensure that there is
|
||||
* enough buffer space for the initial markers (typ. 600-700 bytes) before
|
||||
* calling jpeg_start_compress, and enough space to write the trailing EOI
|
||||
* (a few bytes) before calling jpeg_finish_compress. Multipass compression
|
||||
* modes are not supported at all with suspension, so those two are the only
|
||||
* points where markers will be written.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
emit_byte(j_compress_ptr cinfo, int val)
|
||||
/* Emit a byte */
|
||||
{
|
||||
struct jpeg_destination_mgr *dest = cinfo->dest;
|
||||
|
||||
*(dest->next_output_byte)++ = (JOCTET)val;
|
||||
if (--dest->free_in_buffer == 0) {
|
||||
if (!(*dest->empty_output_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_marker(j_compress_ptr cinfo, JPEG_MARKER mark)
|
||||
/* Emit a marker code */
|
||||
{
|
||||
emit_byte(cinfo, 0xFF);
|
||||
emit_byte(cinfo, (int)mark);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_2bytes(j_compress_ptr cinfo, int value)
|
||||
/* Emit a 2-byte integer; these are always MSB first in JPEG files */
|
||||
{
|
||||
emit_byte(cinfo, (value >> 8) & 0xFF);
|
||||
emit_byte(cinfo, value & 0xFF);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Routines to write specific marker types.
|
||||
*/
|
||||
|
||||
LOCAL(int)
|
||||
emit_dqt(j_compress_ptr cinfo, int index)
|
||||
/* Emit a DQT marker */
|
||||
/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */
|
||||
{
|
||||
JQUANT_TBL *qtbl = cinfo->quant_tbl_ptrs[index];
|
||||
int prec;
|
||||
int i;
|
||||
|
||||
if (qtbl == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index);
|
||||
|
||||
prec = 0;
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
if (qtbl->quantval[i] > 255)
|
||||
prec = 1;
|
||||
}
|
||||
|
||||
if (!qtbl->sent_table) {
|
||||
emit_marker(cinfo, M_DQT);
|
||||
|
||||
emit_2bytes(cinfo, prec ? DCTSIZE2 * 2 + 1 + 2 : DCTSIZE2 + 1 + 2);
|
||||
|
||||
emit_byte(cinfo, index + (prec << 4));
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
/* The table entries must be emitted in zigzag order. */
|
||||
unsigned int qval = qtbl->quantval[jpeg_natural_order[i]];
|
||||
if (prec)
|
||||
emit_byte(cinfo, (int)(qval >> 8));
|
||||
emit_byte(cinfo, (int)(qval & 0xFF));
|
||||
}
|
||||
|
||||
qtbl->sent_table = TRUE;
|
||||
}
|
||||
|
||||
return prec;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_dht(j_compress_ptr cinfo, int index, boolean is_ac)
|
||||
/* Emit a DHT marker */
|
||||
{
|
||||
JHUFF_TBL *htbl;
|
||||
int length, i;
|
||||
|
||||
if (is_ac) {
|
||||
htbl = cinfo->ac_huff_tbl_ptrs[index];
|
||||
index += 0x10; /* output index has AC bit set */
|
||||
} else {
|
||||
htbl = cinfo->dc_huff_tbl_ptrs[index];
|
||||
}
|
||||
|
||||
if (htbl == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
|
||||
|
||||
if (!htbl->sent_table) {
|
||||
emit_marker(cinfo, M_DHT);
|
||||
|
||||
length = 0;
|
||||
for (i = 1; i <= 16; i++)
|
||||
length += htbl->bits[i];
|
||||
|
||||
emit_2bytes(cinfo, length + 2 + 1 + 16);
|
||||
emit_byte(cinfo, index);
|
||||
|
||||
for (i = 1; i <= 16; i++)
|
||||
emit_byte(cinfo, htbl->bits[i]);
|
||||
|
||||
for (i = 0; i < length; i++)
|
||||
emit_byte(cinfo, htbl->huffval[i]);
|
||||
|
||||
htbl->sent_table = TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_dac(j_compress_ptr cinfo)
|
||||
/* Emit a DAC marker */
|
||||
/* Since the useful info is so small, we want to emit all the tables in */
|
||||
/* one DAC marker. Therefore this routine does its own scan of the table. */
|
||||
{
|
||||
#ifdef C_ARITH_CODING_SUPPORTED
|
||||
char dc_in_use[NUM_ARITH_TBLS];
|
||||
char ac_in_use[NUM_ARITH_TBLS];
|
||||
int length, i;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++)
|
||||
dc_in_use[i] = ac_in_use[i] = 0;
|
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
/* DC needs no table for refinement scan */
|
||||
if (cinfo->Ss == 0 && cinfo->Ah == 0)
|
||||
dc_in_use[compptr->dc_tbl_no] = 1;
|
||||
/* AC needs no table when not present */
|
||||
if (cinfo->Se)
|
||||
ac_in_use[compptr->ac_tbl_no] = 1;
|
||||
}
|
||||
|
||||
length = 0;
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++)
|
||||
length += dc_in_use[i] + ac_in_use[i];
|
||||
|
||||
if (length) {
|
||||
emit_marker(cinfo, M_DAC);
|
||||
|
||||
emit_2bytes(cinfo, length * 2 + 2);
|
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
if (dc_in_use[i]) {
|
||||
emit_byte(cinfo, i);
|
||||
emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i] << 4));
|
||||
}
|
||||
if (ac_in_use[i]) {
|
||||
emit_byte(cinfo, i + 0x10);
|
||||
emit_byte(cinfo, cinfo->arith_ac_K[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif /* C_ARITH_CODING_SUPPORTED */
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_dri(j_compress_ptr cinfo)
|
||||
/* Emit a DRI marker */
|
||||
{
|
||||
emit_marker(cinfo, M_DRI);
|
||||
|
||||
emit_2bytes(cinfo, 4); /* fixed length */
|
||||
|
||||
emit_2bytes(cinfo, (int)cinfo->restart_interval);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_sof(j_compress_ptr cinfo, JPEG_MARKER code)
|
||||
/* Emit a SOF marker */
|
||||
{
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
emit_marker(cinfo, code);
|
||||
|
||||
emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
|
||||
|
||||
/* Make sure image isn't bigger than SOF field can handle */
|
||||
if ((long)cinfo->_jpeg_height > 65535L || (long)cinfo->_jpeg_width > 65535L)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int)65535);
|
||||
|
||||
emit_byte(cinfo, cinfo->data_precision);
|
||||
emit_2bytes(cinfo, (int)cinfo->_jpeg_height);
|
||||
emit_2bytes(cinfo, (int)cinfo->_jpeg_width);
|
||||
|
||||
emit_byte(cinfo, cinfo->num_components);
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
emit_byte(cinfo, compptr->component_id);
|
||||
emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor);
|
||||
emit_byte(cinfo, compptr->quant_tbl_no);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_sos(j_compress_ptr cinfo)
|
||||
/* Emit a SOS marker */
|
||||
{
|
||||
int i, td, ta;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
emit_marker(cinfo, M_SOS);
|
||||
|
||||
emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
|
||||
|
||||
emit_byte(cinfo, cinfo->comps_in_scan);
|
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
emit_byte(cinfo, compptr->component_id);
|
||||
|
||||
/* We emit 0 for unused field(s); this is recommended by the P&M text
|
||||
* but does not seem to be specified in the standard.
|
||||
*/
|
||||
|
||||
/* DC needs no table for refinement scan */
|
||||
td = cinfo->Ss == 0 && cinfo->Ah == 0 ? compptr->dc_tbl_no : 0;
|
||||
/* AC needs no table when not present */
|
||||
ta = cinfo->Se ? compptr->ac_tbl_no : 0;
|
||||
|
||||
emit_byte(cinfo, (td << 4) + ta);
|
||||
}
|
||||
|
||||
emit_byte(cinfo, cinfo->Ss);
|
||||
emit_byte(cinfo, cinfo->Se);
|
||||
emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_jfif_app0(j_compress_ptr cinfo)
|
||||
/* Emit a JFIF-compliant APP0 marker */
|
||||
{
|
||||
/*
|
||||
* Length of APP0 block (2 bytes)
|
||||
* Block ID (4 bytes - ASCII "JFIF")
|
||||
* Zero byte (1 byte to terminate the ID string)
|
||||
* Version Major, Minor (2 bytes - major first)
|
||||
* Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
|
||||
* Xdpu (2 bytes - dots per unit horizontal)
|
||||
* Ydpu (2 bytes - dots per unit vertical)
|
||||
* Thumbnail X size (1 byte)
|
||||
* Thumbnail Y size (1 byte)
|
||||
*/
|
||||
|
||||
emit_marker(cinfo, M_APP0);
|
||||
|
||||
emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
|
||||
|
||||
emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */
|
||||
emit_byte(cinfo, 0x46);
|
||||
emit_byte(cinfo, 0x49);
|
||||
emit_byte(cinfo, 0x46);
|
||||
emit_byte(cinfo, 0);
|
||||
emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */
|
||||
emit_byte(cinfo, cinfo->JFIF_minor_version);
|
||||
emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
|
||||
emit_2bytes(cinfo, (int)cinfo->X_density);
|
||||
emit_2bytes(cinfo, (int)cinfo->Y_density);
|
||||
emit_byte(cinfo, 0); /* No thumbnail image */
|
||||
emit_byte(cinfo, 0);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_adobe_app14(j_compress_ptr cinfo)
|
||||
/* Emit an Adobe APP14 marker */
|
||||
{
|
||||
/*
|
||||
* Length of APP14 block (2 bytes)
|
||||
* Block ID (5 bytes - ASCII "Adobe")
|
||||
* Version Number (2 bytes - currently 100)
|
||||
* Flags0 (2 bytes - currently 0)
|
||||
* Flags1 (2 bytes - currently 0)
|
||||
* Color transform (1 byte)
|
||||
*
|
||||
* Although Adobe TN 5116 mentions Version = 101, all the Adobe files
|
||||
* now in circulation seem to use Version = 100, so that's what we write.
|
||||
*
|
||||
* We write the color transform byte as 1 if the JPEG color space is
|
||||
* YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with
|
||||
* whether the encoder performed a transformation, which is pretty useless.
|
||||
*/
|
||||
|
||||
emit_marker(cinfo, M_APP14);
|
||||
|
||||
emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
|
||||
|
||||
emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */
|
||||
emit_byte(cinfo, 0x64);
|
||||
emit_byte(cinfo, 0x6F);
|
||||
emit_byte(cinfo, 0x62);
|
||||
emit_byte(cinfo, 0x65);
|
||||
emit_2bytes(cinfo, 100); /* Version */
|
||||
emit_2bytes(cinfo, 0); /* Flags0 */
|
||||
emit_2bytes(cinfo, 0); /* Flags1 */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case JCS_YCbCr:
|
||||
emit_byte(cinfo, 1); /* Color transform = 1 */
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
emit_byte(cinfo, 2); /* Color transform = 2 */
|
||||
break;
|
||||
default:
|
||||
emit_byte(cinfo, 0); /* Color transform = 0 */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines allow writing an arbitrary marker with parameters.
|
||||
* The only intended use is to emit COM or APPn markers after calling
|
||||
* write_file_header and before calling write_frame_header.
|
||||
* Other uses are not guaranteed to produce desirable results.
|
||||
* Counting the parameter bytes properly is the caller's responsibility.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_marker_header(j_compress_ptr cinfo, int marker, unsigned int datalen)
|
||||
/* Emit an arbitrary marker header */
|
||||
{
|
||||
if (datalen > (unsigned int)65533) /* safety check */
|
||||
ERREXIT(cinfo, JERR_BAD_LENGTH);
|
||||
|
||||
emit_marker(cinfo, (JPEG_MARKER)marker);
|
||||
|
||||
emit_2bytes(cinfo, (int)(datalen + 2)); /* total length */
|
||||
}
|
||||
|
||||
METHODDEF(void)
|
||||
write_marker_byte(j_compress_ptr cinfo, int val)
|
||||
/* Emit one byte of marker parameters following write_marker_header */
|
||||
{
|
||||
emit_byte(cinfo, val);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write datastream header.
|
||||
* This consists of an SOI and optional APPn markers.
|
||||
* We recommend use of the JFIF marker, but not the Adobe marker,
|
||||
* when using YCbCr or grayscale data. The JFIF marker should NOT
|
||||
* be used for any other JPEG colorspace. The Adobe marker is helpful
|
||||
* to distinguish RGB, CMYK, and YCCK colorspaces.
|
||||
* Note that an application can write additional header markers after
|
||||
* jpeg_start_compress returns.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_file_header(j_compress_ptr cinfo)
|
||||
{
|
||||
my_marker_ptr marker = (my_marker_ptr)cinfo->marker;
|
||||
|
||||
emit_marker(cinfo, M_SOI); /* first the SOI */
|
||||
|
||||
/* SOI is defined to reset restart interval to 0 */
|
||||
marker->last_restart_interval = 0;
|
||||
|
||||
if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */
|
||||
emit_jfif_app0(cinfo);
|
||||
if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
|
||||
emit_adobe_app14(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write frame header.
|
||||
* This consists of DQT and SOFn markers.
|
||||
* Note that we do not emit the SOF until we have emitted the DQT(s).
|
||||
* This avoids compatibility problems with incorrect implementations that
|
||||
* try to error-check the quant table numbers as soon as they see the SOF.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_frame_header(j_compress_ptr cinfo)
|
||||
{
|
||||
int ci, prec = 0;
|
||||
boolean is_baseline;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (!cinfo->master->lossless) {
|
||||
/* Emit DQT for each quantization table.
|
||||
* Note that emit_dqt() suppresses any duplicate tables.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
prec += emit_dqt(cinfo, compptr->quant_tbl_no);
|
||||
}
|
||||
/* now prec is nonzero iff there are any 16-bit quant tables. */
|
||||
}
|
||||
|
||||
/* Check for a non-baseline specification.
|
||||
* Note we assume that Huffman table numbers won't be changed later.
|
||||
*/
|
||||
if (cinfo->arith_code || cinfo->progressive_mode ||
|
||||
cinfo->master->lossless || cinfo->data_precision != 8) {
|
||||
is_baseline = FALSE;
|
||||
} else {
|
||||
is_baseline = TRUE;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
|
||||
is_baseline = FALSE;
|
||||
}
|
||||
if (prec && is_baseline) {
|
||||
is_baseline = FALSE;
|
||||
/* If it's baseline except for quantizer size, warn the user */
|
||||
TRACEMS(cinfo, 0, JTRC_16BIT_TABLES);
|
||||
}
|
||||
}
|
||||
|
||||
/* Emit the proper SOF marker */
|
||||
if (cinfo->arith_code) {
|
||||
if (cinfo->progressive_mode)
|
||||
emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */
|
||||
else
|
||||
emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */
|
||||
} else {
|
||||
if (cinfo->progressive_mode)
|
||||
emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */
|
||||
else if (cinfo->master->lossless)
|
||||
emit_sof(cinfo, M_SOF3); /* SOF code for lossless Huffman */
|
||||
else if (is_baseline)
|
||||
emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */
|
||||
else
|
||||
emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write scan header.
|
||||
* This consists of DHT or DAC markers, optional DRI, and SOS.
|
||||
* Compressed data will be written following the SOS.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_scan_header(j_compress_ptr cinfo)
|
||||
{
|
||||
my_marker_ptr marker = (my_marker_ptr)cinfo->marker;
|
||||
int i;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->arith_code) {
|
||||
/* Emit arith conditioning info. We may have some duplication
|
||||
* if the file has multiple scans, but it's so small it's hardly
|
||||
* worth worrying about.
|
||||
*/
|
||||
emit_dac(cinfo);
|
||||
} else {
|
||||
/* Emit Huffman tables.
|
||||
* Note that emit_dht() suppresses any duplicate tables.
|
||||
*/
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
/* DC needs no table for refinement scan */
|
||||
if ((cinfo->Ss == 0 && cinfo->Ah == 0) || cinfo->master->lossless)
|
||||
emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
|
||||
/* AC needs no table when not present, and lossless mode uses only DC
|
||||
tables. */
|
||||
if (cinfo->Se && !cinfo->master->lossless)
|
||||
emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
|
||||
}
|
||||
}
|
||||
|
||||
/* Emit DRI if required --- note that DRI value could change for each scan.
|
||||
* We avoid wasting space with unnecessary DRIs, however.
|
||||
*/
|
||||
if (cinfo->restart_interval != marker->last_restart_interval) {
|
||||
emit_dri(cinfo);
|
||||
marker->last_restart_interval = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
emit_sos(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write datastream trailer.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_file_trailer(j_compress_ptr cinfo)
|
||||
{
|
||||
emit_marker(cinfo, M_EOI);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write an abbreviated table-specification datastream.
|
||||
* This consists of SOI, DQT and DHT tables, and EOI.
|
||||
* Any table that is defined and not marked sent_table = TRUE will be
|
||||
* emitted. Note that all tables will be marked sent_table = TRUE at exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_tables_only(j_compress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
|
||||
emit_marker(cinfo, M_SOI);
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
if (cinfo->quant_tbl_ptrs[i] != NULL)
|
||||
(void)emit_dqt(cinfo, i);
|
||||
}
|
||||
|
||||
if (!cinfo->arith_code) {
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
|
||||
emit_dht(cinfo, i, FALSE);
|
||||
if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
|
||||
emit_dht(cinfo, i, TRUE);
|
||||
}
|
||||
}
|
||||
|
||||
emit_marker(cinfo, M_EOI);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the marker writer module.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_marker_writer(j_compress_ptr cinfo)
|
||||
{
|
||||
my_marker_ptr marker;
|
||||
|
||||
/* Create the subobject */
|
||||
marker = (my_marker_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_marker_writer));
|
||||
cinfo->marker = (struct jpeg_marker_writer *)marker;
|
||||
/* Initialize method pointers */
|
||||
marker->pub.write_file_header = write_file_header;
|
||||
marker->pub.write_frame_header = write_frame_header;
|
||||
marker->pub.write_scan_header = write_scan_header;
|
||||
marker->pub.write_file_trailer = write_file_trailer;
|
||||
marker->pub.write_tables_only = write_tables_only;
|
||||
marker->pub.write_marker_header = write_marker_header;
|
||||
marker->pub.write_marker_byte = write_marker_byte;
|
||||
/* Initialize private state */
|
||||
marker->last_restart_interval = 0;
|
||||
}
|
||||
801
thirdparty/libjpeg-turbo/src/jcmaster.c
vendored
Normal file
801
thirdparty/libjpeg-turbo/src/jcmaster.c
vendored
Normal file
@@ -0,0 +1,801 @@
|
||||
/*
|
||||
* jcmaster.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 2003-2010 by Guido Vollbeding.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2010, 2016, 2018, 2022-2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains master control logic for the JPEG compressor.
|
||||
* These routines are concerned with parameter validation, initial setup,
|
||||
* and inter-pass control (determining the number of passes and the work
|
||||
* to be done in each pass).
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jpegapicomp.h"
|
||||
#include "jcmaster.h"
|
||||
|
||||
|
||||
/*
|
||||
* Support routines that do various essential calculations.
|
||||
*/
|
||||
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
/*
|
||||
* Compute JPEG image dimensions and related values.
|
||||
* NOTE: this is exported for possible use by application.
|
||||
* Hence it mustn't do anything that can't be done twice.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_calc_jpeg_dimensions(j_compress_ptr cinfo)
|
||||
/* Do computations that are needed before master selection phase */
|
||||
{
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
|
||||
/* Hardwire it to "no scaling" */
|
||||
cinfo->jpeg_width = cinfo->image_width;
|
||||
cinfo->jpeg_height = cinfo->image_height;
|
||||
cinfo->min_DCT_h_scaled_size = data_unit;
|
||||
cinfo->min_DCT_v_scaled_size = data_unit;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(boolean)
|
||||
using_std_huff_tables(j_compress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
|
||||
static const UINT8 bits_dc_luminance[17] = {
|
||||
/* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
static const UINT8 val_dc_luminance[] = {
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
|
||||
};
|
||||
|
||||
static const UINT8 bits_dc_chrominance[17] = {
|
||||
/* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0
|
||||
};
|
||||
static const UINT8 val_dc_chrominance[] = {
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
|
||||
};
|
||||
|
||||
static const UINT8 bits_ac_luminance[17] = {
|
||||
/* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d
|
||||
};
|
||||
static const UINT8 val_ac_luminance[] = {
|
||||
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
|
||||
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
|
||||
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
|
||||
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
|
||||
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
|
||||
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
|
||||
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
|
||||
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
|
||||
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
|
||||
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
|
||||
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
|
||||
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
|
||||
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
|
||||
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
|
||||
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
|
||||
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
|
||||
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
|
||||
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
|
||||
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
|
||||
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa
|
||||
};
|
||||
|
||||
static const UINT8 bits_ac_chrominance[17] = {
|
||||
/* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77
|
||||
};
|
||||
static const UINT8 val_ac_chrominance[] = {
|
||||
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
|
||||
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
|
||||
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
|
||||
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
|
||||
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
|
||||
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
|
||||
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
|
||||
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
|
||||
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
|
||||
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
|
||||
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
|
||||
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
||||
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
|
||||
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
|
||||
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
|
||||
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
|
||||
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
|
||||
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
|
||||
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
|
||||
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa
|
||||
};
|
||||
|
||||
if (cinfo->dc_huff_tbl_ptrs[0] == NULL ||
|
||||
cinfo->ac_huff_tbl_ptrs[0] == NULL ||
|
||||
cinfo->dc_huff_tbl_ptrs[1] == NULL ||
|
||||
cinfo->ac_huff_tbl_ptrs[1] == NULL)
|
||||
return FALSE;
|
||||
|
||||
for (i = 2; i < NUM_HUFF_TBLS; i++) {
|
||||
if (cinfo->dc_huff_tbl_ptrs[i] != NULL ||
|
||||
cinfo->ac_huff_tbl_ptrs[i] != NULL)
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
if (memcmp(cinfo->dc_huff_tbl_ptrs[0]->bits, bits_dc_luminance,
|
||||
sizeof(bits_dc_luminance)) ||
|
||||
memcmp(cinfo->dc_huff_tbl_ptrs[0]->huffval, val_dc_luminance,
|
||||
sizeof(val_dc_luminance)) ||
|
||||
memcmp(cinfo->ac_huff_tbl_ptrs[0]->bits, bits_ac_luminance,
|
||||
sizeof(bits_ac_luminance)) ||
|
||||
memcmp(cinfo->ac_huff_tbl_ptrs[0]->huffval, val_ac_luminance,
|
||||
sizeof(val_ac_luminance)) ||
|
||||
memcmp(cinfo->dc_huff_tbl_ptrs[1]->bits, bits_dc_chrominance,
|
||||
sizeof(bits_dc_chrominance)) ||
|
||||
memcmp(cinfo->dc_huff_tbl_ptrs[1]->huffval, val_dc_chrominance,
|
||||
sizeof(val_dc_chrominance)) ||
|
||||
memcmp(cinfo->ac_huff_tbl_ptrs[1]->bits, bits_ac_chrominance,
|
||||
sizeof(bits_ac_chrominance)) ||
|
||||
memcmp(cinfo->ac_huff_tbl_ptrs[1]->huffval, val_ac_chrominance,
|
||||
sizeof(val_ac_chrominance)))
|
||||
return FALSE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
initial_setup(j_compress_ptr cinfo, boolean transcode_only)
|
||||
/* Do computations that are needed before master selection phase */
|
||||
{
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
long samplesperrow;
|
||||
JDIMENSION jd_samplesperrow;
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
#if JPEG_LIB_VERSION >= 80
|
||||
if (!transcode_only)
|
||||
#endif
|
||||
jpeg_calc_jpeg_dimensions(cinfo);
|
||||
#endif
|
||||
|
||||
/* Sanity check on image dimensions */
|
||||
if (cinfo->_jpeg_height <= 0 || cinfo->_jpeg_width <= 0 ||
|
||||
cinfo->num_components <= 0 || cinfo->input_components <= 0)
|
||||
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
|
||||
|
||||
/* Make sure image isn't bigger than I can handle */
|
||||
if ((long)cinfo->_jpeg_height > (long)JPEG_MAX_DIMENSION ||
|
||||
(long)cinfo->_jpeg_width > (long)JPEG_MAX_DIMENSION)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int)JPEG_MAX_DIMENSION);
|
||||
|
||||
/* Width of an input scanline must be representable as JDIMENSION. */
|
||||
samplesperrow = (long)cinfo->image_width * (long)cinfo->input_components;
|
||||
jd_samplesperrow = (JDIMENSION)samplesperrow;
|
||||
if ((long)jd_samplesperrow != samplesperrow)
|
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
||||
|
||||
/* Lossy JPEG images must have 8 or 12 bits per sample. Lossless JPEG images
|
||||
* can have 2 to 16 bits per sample.
|
||||
*/
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
if (cinfo->data_precision < 2 || cinfo->data_precision > 16)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
if (cinfo->data_precision != 8 && cinfo->data_precision != 12)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
}
|
||||
|
||||
/* Check that number of components won't exceed internal array sizes */
|
||||
if (cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
|
||||
/* Compute maximum sampling factors; check factor validity */
|
||||
cinfo->max_h_samp_factor = 1;
|
||||
cinfo->max_v_samp_factor = 1;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->h_samp_factor <= 0 ||
|
||||
compptr->h_samp_factor > MAX_SAMP_FACTOR ||
|
||||
compptr->v_samp_factor <= 0 ||
|
||||
compptr->v_samp_factor > MAX_SAMP_FACTOR)
|
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING);
|
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
|
||||
compptr->h_samp_factor);
|
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
|
||||
compptr->v_samp_factor);
|
||||
}
|
||||
|
||||
/* Compute dimensions of components */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Fill in the correct component_index value; don't rely on application */
|
||||
compptr->component_index = ci;
|
||||
/* For compression, we never do DCT scaling. */
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = data_unit;
|
||||
#else
|
||||
compptr->DCT_scaled_size = data_unit;
|
||||
#endif
|
||||
/* Size in data units */
|
||||
compptr->width_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->_jpeg_width * (long)compptr->h_samp_factor,
|
||||
(long)(cinfo->max_h_samp_factor * data_unit));
|
||||
compptr->height_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->_jpeg_height * (long)compptr->v_samp_factor,
|
||||
(long)(cinfo->max_v_samp_factor * data_unit));
|
||||
/* Size in samples */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->_jpeg_width * (long)compptr->h_samp_factor,
|
||||
(long)cinfo->max_h_samp_factor);
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->_jpeg_height * (long)compptr->v_samp_factor,
|
||||
(long)cinfo->max_v_samp_factor);
|
||||
/* Mark component needed (this flag isn't actually used for compression) */
|
||||
compptr->component_needed = TRUE;
|
||||
}
|
||||
|
||||
/* Compute number of fully interleaved MCU rows (number of times that
|
||||
* main controller will call coefficient or difference controller).
|
||||
*/
|
||||
cinfo->total_iMCU_rows = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->_jpeg_height,
|
||||
(long)(cinfo->max_v_samp_factor * data_unit));
|
||||
}
|
||||
|
||||
|
||||
#if defined(C_MULTISCAN_FILES_SUPPORTED) || defined(C_LOSSLESS_SUPPORTED)
|
||||
#define NEED_SCAN_SCRIPT
|
||||
#endif
|
||||
|
||||
#ifdef NEED_SCAN_SCRIPT
|
||||
|
||||
LOCAL(void)
|
||||
validate_script(j_compress_ptr cinfo)
|
||||
/* Verify that the scan script in cinfo->scan_info[] is valid; also
|
||||
* determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
|
||||
*/
|
||||
{
|
||||
const jpeg_scan_info *scanptr;
|
||||
int scanno, ncomps, ci, coefi, thisi;
|
||||
int Ss, Se, Ah, Al;
|
||||
boolean component_sent[MAX_COMPONENTS];
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
int *last_bitpos_ptr;
|
||||
int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
|
||||
/* -1 until that coefficient has been seen; then last Al for it */
|
||||
#endif
|
||||
|
||||
if (cinfo->num_scans <= 0)
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0);
|
||||
|
||||
#ifndef C_MULTISCAN_FILES_SUPPORTED
|
||||
if (cinfo->num_scans > 1)
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
|
||||
scanptr = cinfo->scan_info;
|
||||
if (scanptr->Ss != 0 && scanptr->Se == 0) {
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
cinfo->master->lossless = TRUE;
|
||||
cinfo->progressive_mode = FALSE;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
component_sent[ci] = FALSE;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
}
|
||||
/* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
|
||||
* for progressive JPEG, no scan can have this.
|
||||
*/
|
||||
else if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2 - 1) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
cinfo->progressive_mode = TRUE;
|
||||
cinfo->master->lossless = FALSE;
|
||||
last_bitpos_ptr = &last_bitpos[0][0];
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
for (coefi = 0; coefi < DCTSIZE2; coefi++)
|
||||
*last_bitpos_ptr++ = -1;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
cinfo->progressive_mode = cinfo->master->lossless = FALSE;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
component_sent[ci] = FALSE;
|
||||
}
|
||||
|
||||
for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) {
|
||||
/* Validate component indexes */
|
||||
ncomps = scanptr->comps_in_scan;
|
||||
if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN);
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
thisi = scanptr->component_index[ci];
|
||||
if (thisi < 0 || thisi >= cinfo->num_components)
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||
/* Components must appear in SOF order within each scan */
|
||||
if (ci > 0 && thisi <= scanptr->component_index[ci - 1])
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||
}
|
||||
/* Validate progression parameters */
|
||||
Ss = scanptr->Ss;
|
||||
Se = scanptr->Se;
|
||||
Ah = scanptr->Ah;
|
||||
Al = scanptr->Al;
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
/* Rec. ITU-T T.81 | ISO/IEC 10918-1 simply gives the ranges 0..13 for Ah
|
||||
* and Al, but that seems wrong: the upper bound ought to depend on data
|
||||
* precision. Perhaps they really meant 0..N+1 for N-bit precision.
|
||||
* Here we allow 0..10 for 8-bit data; Al larger than 10 results in
|
||||
* out-of-range reconstructed DC values during the first DC scan,
|
||||
* which might cause problems for some decoders.
|
||||
*/
|
||||
int max_Ah_Al = cinfo->data_precision == 12 ? 13 : 10;
|
||||
|
||||
if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
|
||||
Ah < 0 || Ah > max_Ah_Al || Al < 0 || Al > max_Ah_Al)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
if (Ss == 0) {
|
||||
if (Se != 0) /* DC and AC together not OK */
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
} else {
|
||||
if (ncomps != 1) /* AC scans must be for only one component */
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
}
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
last_bitpos_ptr = &last_bitpos[scanptr->component_index[ci]][0];
|
||||
if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
for (coefi = Ss; coefi <= Se; coefi++) {
|
||||
if (last_bitpos_ptr[coefi] < 0) {
|
||||
/* first scan of this coefficient */
|
||||
if (Ah != 0)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
} else {
|
||||
/* not first scan */
|
||||
if (Ah != last_bitpos_ptr[coefi] || Al != Ah - 1)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
}
|
||||
last_bitpos_ptr[coefi] = Al;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
/* The JPEG spec simply gives the range 0..15 for Al (Pt), but that
|
||||
* seems wrong: the upper bound ought to depend on data precision.
|
||||
* Perhaps they really meant 0..N-1 for N-bit precision, which is what
|
||||
* we allow here. Values greater than or equal to the data precision
|
||||
* will result in a blank image.
|
||||
*/
|
||||
if (Ss < 1 || Ss > 7 || /* predictor selection value */
|
||||
Se != 0 || Ah != 0 ||
|
||||
Al < 0 || Al >= cinfo->data_precision) /* point transform */
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
/* For sequential JPEG, all progression parameters must be these: */
|
||||
if (Ss != 0 || Se != DCTSIZE2 - 1 || Ah != 0 || Al != 0)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
}
|
||||
/* Make sure components are not sent twice */
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
thisi = scanptr->component_index[ci];
|
||||
if (component_sent[thisi])
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||
component_sent[thisi] = TRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Now verify that everything got sent. */
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
/* For progressive mode, we only check that at least some DC data
|
||||
* got sent for each component; the spec does not require that all bits
|
||||
* of all coefficients be transmitted. Would it be wiser to enforce
|
||||
* transmission of all coefficient bits??
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
if (last_bitpos[ci][0] < 0)
|
||||
ERREXIT(cinfo, JERR_MISSING_DATA);
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
if (!component_sent[ci])
|
||||
ERREXIT(cinfo, JERR_MISSING_DATA);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* NEED_SCAN_SCRIPT */
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
select_scan_parameters(j_compress_ptr cinfo)
|
||||
/* Set up the scan parameters for the current scan */
|
||||
{
|
||||
int ci;
|
||||
|
||||
#ifdef NEED_SCAN_SCRIPT
|
||||
if (cinfo->scan_info != NULL) {
|
||||
/* Prepare for current scan --- the script is already validated */
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
const jpeg_scan_info *scanptr = cinfo->scan_info + master->scan_number;
|
||||
|
||||
cinfo->comps_in_scan = scanptr->comps_in_scan;
|
||||
for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
|
||||
cinfo->cur_comp_info[ci] =
|
||||
&cinfo->comp_info[scanptr->component_index[ci]];
|
||||
}
|
||||
cinfo->Ss = scanptr->Ss;
|
||||
cinfo->Se = scanptr->Se;
|
||||
cinfo->Ah = scanptr->Ah;
|
||||
cinfo->Al = scanptr->Al;
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
/* Prepare for single sequential-JPEG scan containing all components */
|
||||
if (cinfo->num_components > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
cinfo->comps_in_scan = cinfo->num_components;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
|
||||
}
|
||||
if (!cinfo->master->lossless) {
|
||||
cinfo->Ss = 0;
|
||||
cinfo->Se = DCTSIZE2 - 1;
|
||||
cinfo->Ah = 0;
|
||||
cinfo->Al = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
per_scan_setup(j_compress_ptr cinfo)
|
||||
/* Do computations that are needed before processing a JPEG scan */
|
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
|
||||
{
|
||||
int ci, mcublks, tmp;
|
||||
jpeg_component_info *compptr;
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
|
||||
/* Noninterleaved (single-component) scan */
|
||||
compptr = cinfo->cur_comp_info[0];
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = compptr->width_in_blocks;
|
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
|
||||
|
||||
/* For noninterleaved scan, always one block per MCU */
|
||||
compptr->MCU_width = 1;
|
||||
compptr->MCU_height = 1;
|
||||
compptr->MCU_blocks = 1;
|
||||
compptr->MCU_sample_width = data_unit;
|
||||
compptr->last_col_width = 1;
|
||||
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||
* as the number of block rows present in the last iMCU row.
|
||||
*/
|
||||
tmp = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (tmp == 0) tmp = compptr->v_samp_factor;
|
||||
compptr->last_row_height = tmp;
|
||||
|
||||
/* Prepare array describing MCU composition */
|
||||
cinfo->blocks_in_MCU = 1;
|
||||
cinfo->MCU_membership[0] = 0;
|
||||
|
||||
} else {
|
||||
|
||||
/* Interleaved (multi-component) scan */
|
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->_jpeg_width,
|
||||
(long)(cinfo->max_h_samp_factor * data_unit));
|
||||
cinfo->MCU_rows_in_scan = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->_jpeg_height,
|
||||
(long)(cinfo->max_v_samp_factor * data_unit));
|
||||
|
||||
cinfo->blocks_in_MCU = 0;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Sampling factors give # of blocks of component in each MCU */
|
||||
compptr->MCU_width = compptr->h_samp_factor;
|
||||
compptr->MCU_height = compptr->v_samp_factor;
|
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
|
||||
compptr->MCU_sample_width = compptr->MCU_width * data_unit;
|
||||
/* Figure number of non-dummy blocks in last MCU column & row */
|
||||
tmp = (int)(compptr->width_in_blocks % compptr->MCU_width);
|
||||
if (tmp == 0) tmp = compptr->MCU_width;
|
||||
compptr->last_col_width = tmp;
|
||||
tmp = (int)(compptr->height_in_blocks % compptr->MCU_height);
|
||||
if (tmp == 0) tmp = compptr->MCU_height;
|
||||
compptr->last_row_height = tmp;
|
||||
/* Prepare array describing MCU composition */
|
||||
mcublks = compptr->MCU_blocks;
|
||||
if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
|
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
|
||||
while (mcublks-- > 0) {
|
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Convert restart specified in rows to actual MCU count. */
|
||||
/* Note that count must fit in 16 bits, so we provide limiting. */
|
||||
if (cinfo->restart_in_rows > 0) {
|
||||
long nominal = (long)cinfo->restart_in_rows * (long)cinfo->MCUs_per_row;
|
||||
cinfo->restart_interval = (unsigned int)MIN(nominal, 65535L);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup.
|
||||
* This is called at the beginning of each pass. We determine which modules
|
||||
* will be active during this pass and give them appropriate start_pass calls.
|
||||
* We also set is_last_pass to indicate whether any more passes will be
|
||||
* required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
prepare_for_pass(j_compress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
|
||||
switch (master->pass_type) {
|
||||
case main_pass:
|
||||
/* Initial pass: will collect input data, and do either Huffman
|
||||
* optimization or data output for the first scan.
|
||||
*/
|
||||
select_scan_parameters(cinfo);
|
||||
per_scan_setup(cinfo);
|
||||
if (!cinfo->raw_data_in) {
|
||||
(*cinfo->cconvert->start_pass) (cinfo);
|
||||
(*cinfo->downsample->start_pass) (cinfo);
|
||||
(*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
}
|
||||
(*cinfo->fdct->start_pass) (cinfo);
|
||||
(*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding);
|
||||
(*cinfo->coef->start_pass) (cinfo,
|
||||
(master->total_passes > 1 ?
|
||||
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
if (cinfo->optimize_coding) {
|
||||
/* No immediate data output; postpone writing frame/scan headers */
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
} else {
|
||||
/* Will write frame/scan headers at first jpeg_write_scanlines call */
|
||||
master->pub.call_pass_startup = TRUE;
|
||||
}
|
||||
break;
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
case huff_opt_pass:
|
||||
/* Do Huffman optimization for a scan after the first one. */
|
||||
select_scan_parameters(cinfo);
|
||||
per_scan_setup(cinfo);
|
||||
if (cinfo->Ss != 0 || cinfo->Ah == 0 || cinfo->arith_code ||
|
||||
cinfo->master->lossless) {
|
||||
(*cinfo->entropy->start_pass) (cinfo, TRUE);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
break;
|
||||
}
|
||||
/* Special case: Huffman DC refinement scans need no Huffman table
|
||||
* and therefore we can skip the optimization pass for them.
|
||||
*/
|
||||
master->pass_type = output_pass;
|
||||
master->pass_number++;
|
||||
#endif
|
||||
FALLTHROUGH /*FALLTHROUGH*/
|
||||
case output_pass:
|
||||
/* Do a data-output pass. */
|
||||
/* We need not repeat per-scan setup if prior optimization pass did it. */
|
||||
if (!cinfo->optimize_coding) {
|
||||
select_scan_parameters(cinfo);
|
||||
per_scan_setup(cinfo);
|
||||
}
|
||||
(*cinfo->entropy->start_pass) (cinfo, FALSE);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
/* We emit frame/scan headers now */
|
||||
if (master->scan_number == 0)
|
||||
(*cinfo->marker->write_frame_header) (cinfo);
|
||||
(*cinfo->marker->write_scan_header) (cinfo);
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
}
|
||||
|
||||
master->pub.is_last_pass = (master->pass_number == master->total_passes - 1);
|
||||
|
||||
/* Set up progress monitor's pass info if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->completed_passes = master->pass_number;
|
||||
cinfo->progress->total_passes = master->total_passes;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Special start-of-pass hook.
|
||||
* This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
|
||||
* In single-pass processing, we need this hook because we don't want to
|
||||
* write frame/scan headers during jpeg_start_compress; we want to let the
|
||||
* application write COM markers etc. between jpeg_start_compress and the
|
||||
* jpeg_write_scanlines loop.
|
||||
* In multi-pass processing, this routine is not used.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
pass_startup(j_compress_ptr cinfo)
|
||||
{
|
||||
cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
|
||||
|
||||
(*cinfo->marker->write_frame_header) (cinfo);
|
||||
(*cinfo->marker->write_scan_header) (cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass_master(j_compress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
|
||||
/* The entropy coder always needs an end-of-pass call,
|
||||
* either to analyze statistics or to flush its output buffer.
|
||||
*/
|
||||
(*cinfo->entropy->finish_pass) (cinfo);
|
||||
|
||||
/* Update state for next pass */
|
||||
switch (master->pass_type) {
|
||||
case main_pass:
|
||||
/* next pass is either output of scan 0 (after optimization)
|
||||
* or output of scan 1 (if no optimization).
|
||||
*/
|
||||
master->pass_type = output_pass;
|
||||
if (!cinfo->optimize_coding)
|
||||
master->scan_number++;
|
||||
break;
|
||||
case huff_opt_pass:
|
||||
/* next pass is always output of current scan */
|
||||
master->pass_type = output_pass;
|
||||
break;
|
||||
case output_pass:
|
||||
/* next pass is either optimization or output of next scan */
|
||||
if (cinfo->optimize_coding)
|
||||
master->pass_type = huff_opt_pass;
|
||||
master->scan_number++;
|
||||
break;
|
||||
}
|
||||
|
||||
master->pass_number++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize master compression control.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_c_master_control(j_compress_ptr cinfo, boolean transcode_only)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
boolean empty_huff_tables = TRUE;
|
||||
int i;
|
||||
|
||||
master->pub.prepare_for_pass = prepare_for_pass;
|
||||
master->pub.pass_startup = pass_startup;
|
||||
master->pub.finish_pass = finish_pass_master;
|
||||
master->pub.is_last_pass = FALSE;
|
||||
|
||||
if (cinfo->scan_info != NULL) {
|
||||
#ifdef NEED_SCAN_SCRIPT
|
||||
validate_script(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
cinfo->progressive_mode = FALSE;
|
||||
cinfo->num_scans = 1;
|
||||
}
|
||||
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
/* Disable smoothing and subsampling in lossless mode, since those are lossy
|
||||
* algorithms. Set the JPEG colorspace to the input colorspace. Disable raw
|
||||
* (downsampled) data input, because it isn't particularly useful without
|
||||
* subsampling and has not been tested in lossless mode.
|
||||
*/
|
||||
if (cinfo->master->lossless) {
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
cinfo->raw_data_in = FALSE;
|
||||
cinfo->smoothing_factor = 0;
|
||||
jpeg_default_colorspace(cinfo);
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++)
|
||||
compptr->h_samp_factor = compptr->v_samp_factor = 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Validate parameters, determine derived values */
|
||||
initial_setup(cinfo, transcode_only);
|
||||
|
||||
if (cinfo->arith_code)
|
||||
cinfo->optimize_coding = FALSE;
|
||||
else {
|
||||
if (cinfo->master->lossless || /* TEMPORARY HACK ??? */
|
||||
cinfo->progressive_mode)
|
||||
cinfo->optimize_coding = TRUE; /* assume default tables no good for
|
||||
progressive mode or lossless mode */
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
if (cinfo->dc_huff_tbl_ptrs[i] != NULL ||
|
||||
cinfo->ac_huff_tbl_ptrs[i] != NULL) {
|
||||
empty_huff_tables = FALSE;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (cinfo->data_precision == 12 && !cinfo->optimize_coding &&
|
||||
(empty_huff_tables || using_std_huff_tables(cinfo)))
|
||||
cinfo->optimize_coding = TRUE; /* assume default tables no good for
|
||||
12-bit data precision */
|
||||
}
|
||||
|
||||
/* Initialize my private state */
|
||||
if (transcode_only) {
|
||||
/* no main pass in transcoding */
|
||||
if (cinfo->optimize_coding)
|
||||
master->pass_type = huff_opt_pass;
|
||||
else
|
||||
master->pass_type = output_pass;
|
||||
} else {
|
||||
/* for normal compression, first pass is always this type: */
|
||||
master->pass_type = main_pass;
|
||||
}
|
||||
master->scan_number = 0;
|
||||
master->pass_number = 0;
|
||||
if (cinfo->optimize_coding)
|
||||
master->total_passes = cinfo->num_scans * 2;
|
||||
else
|
||||
master->total_passes = cinfo->num_scans;
|
||||
|
||||
master->jpeg_version = PACKAGE_NAME " version " VERSION " (build " BUILD ")";
|
||||
}
|
||||
43
thirdparty/libjpeg-turbo/src/jcmaster.h
vendored
Normal file
43
thirdparty/libjpeg-turbo/src/jcmaster.h
vendored
Normal file
@@ -0,0 +1,43 @@
|
||||
/*
|
||||
* jcmaster.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1995, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2016, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains master control structure for the JPEG compressor.
|
||||
*/
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef enum {
|
||||
main_pass, /* input data, also do first output step */
|
||||
huff_opt_pass, /* Huffman code optimization pass */
|
||||
output_pass /* data output pass */
|
||||
} c_pass_type;
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_comp_master pub; /* public fields */
|
||||
|
||||
c_pass_type pass_type; /* the type of the current pass */
|
||||
|
||||
int pass_number; /* # of passes completed */
|
||||
int total_passes; /* total # of passes needed */
|
||||
|
||||
int scan_number; /* current index in scan_info[] */
|
||||
|
||||
/*
|
||||
* This is here so we can add libjpeg-turbo version/build information to the
|
||||
* global string table without introducing a new global symbol. Adding this
|
||||
* information to the global string table allows one to examine a binary
|
||||
* object and determine which version of libjpeg-turbo it was built from or
|
||||
* linked against.
|
||||
*/
|
||||
const char *jpeg_version;
|
||||
|
||||
} my_comp_master;
|
||||
|
||||
typedef my_comp_master *my_master_ptr;
|
||||
110
thirdparty/libjpeg-turbo/src/jcomapi.c
vendored
Normal file
110
thirdparty/libjpeg-turbo/src/jcomapi.c
vendored
Normal file
@@ -0,0 +1,110 @@
|
||||
/*
|
||||
* jcomapi.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains application interface routines that are used for both
|
||||
* compression and decompression.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression or decompression operation,
|
||||
* but don't destroy the object itself.
|
||||
*
|
||||
* For this, we merely clean up all the nonpermanent memory pools.
|
||||
* Note that temp files (virtual arrays) are not allowed to belong to
|
||||
* the permanent pool, so we will be able to close all temp files here.
|
||||
* Closing a data source or destination, if necessary, is the application's
|
||||
* responsibility.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_abort(j_common_ptr cinfo)
|
||||
{
|
||||
int pool;
|
||||
|
||||
/* Do nothing if called on a not-initialized or destroyed JPEG object. */
|
||||
if (cinfo->mem == NULL)
|
||||
return;
|
||||
|
||||
/* Releasing pools in reverse order might help avoid fragmentation
|
||||
* with some (brain-damaged) malloc libraries.
|
||||
*/
|
||||
for (pool = JPOOL_NUMPOOLS - 1; pool > JPOOL_PERMANENT; pool--) {
|
||||
(*cinfo->mem->free_pool) (cinfo, pool);
|
||||
}
|
||||
|
||||
/* Reset overall state for possible reuse of object */
|
||||
if (cinfo->is_decompressor) {
|
||||
cinfo->global_state = DSTATE_START;
|
||||
/* Try to keep application from accessing now-deleted marker list.
|
||||
* A bit kludgy to do it here, but this is the most central place.
|
||||
*/
|
||||
((j_decompress_ptr)cinfo)->marker_list = NULL;
|
||||
((j_decompress_ptr)cinfo)->master->marker_list_end = NULL;
|
||||
} else {
|
||||
cinfo->global_state = CSTATE_START;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG object.
|
||||
*
|
||||
* Everything gets deallocated except the master jpeg_compress_struct itself
|
||||
* and the error manager struct. Both of these are supplied by the application
|
||||
* and must be freed, if necessary, by the application. (Often they are on
|
||||
* the stack and so don't need to be freed anyway.)
|
||||
* Closing a data source or destination, if necessary, is the application's
|
||||
* responsibility.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_destroy(j_common_ptr cinfo)
|
||||
{
|
||||
/* We need only tell the memory manager to release everything. */
|
||||
/* NB: mem pointer is NULL if memory mgr failed to initialize. */
|
||||
if (cinfo->mem != NULL)
|
||||
(*cinfo->mem->self_destruct) (cinfo);
|
||||
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
|
||||
cinfo->global_state = 0; /* mark it destroyed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convenience routines for allocating quantization and Huffman tables.
|
||||
* (Would jutils.c be a more reasonable place to put these?)
|
||||
*/
|
||||
|
||||
GLOBAL(JQUANT_TBL *)
|
||||
jpeg_alloc_quant_table(j_common_ptr cinfo)
|
||||
{
|
||||
JQUANT_TBL *tbl;
|
||||
|
||||
tbl = (JQUANT_TBL *)
|
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, sizeof(JQUANT_TBL));
|
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */
|
||||
return tbl;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(JHUFF_TBL *)
|
||||
jpeg_alloc_huff_table(j_common_ptr cinfo)
|
||||
{
|
||||
JHUFF_TBL *tbl;
|
||||
|
||||
tbl = (JHUFF_TBL *)
|
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, sizeof(JHUFF_TBL));
|
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */
|
||||
return tbl;
|
||||
}
|
||||
62
thirdparty/libjpeg-turbo/src/jconfig.h
vendored
Normal file
62
thirdparty/libjpeg-turbo/src/jconfig.h
vendored
Normal file
@@ -0,0 +1,62 @@
|
||||
// Originally generated by libjpeg-turbo's cmake build, then modified to support multiple platforms.
|
||||
|
||||
/* Version ID for the JPEG library.
|
||||
* Might be useful for tests like "#if JPEG_LIB_VERSION >= 60".
|
||||
*/
|
||||
#define JPEG_LIB_VERSION 62
|
||||
|
||||
/* libjpeg-turbo version */
|
||||
#define LIBJPEG_TURBO_VERSION 3.1.0
|
||||
|
||||
/* libjpeg-turbo version in integer form */
|
||||
#define LIBJPEG_TURBO_VERSION_NUMBER 3001000
|
||||
|
||||
/* Support arithmetic encoding when using 8-bit samples */
|
||||
#define C_ARITH_CODING_SUPPORTED 1
|
||||
|
||||
/* Support arithmetic decoding when using 8-bit samples */
|
||||
#define D_ARITH_CODING_SUPPORTED 1
|
||||
|
||||
/* Support in-memory source/destination managers */
|
||||
#define MEM_SRCDST_SUPPORTED 1
|
||||
|
||||
/* Use accelerated SIMD routines when using 8-bit samples */
|
||||
//#define WITH_SIMD 1
|
||||
|
||||
/* This version of libjpeg-turbo supports run-time selection of data precision,
|
||||
* so BITS_IN_JSAMPLE is no longer used to specify the data precision at build
|
||||
* time. However, some downstream software expects the macro to be defined.
|
||||
* Since 12-bit data precision is an opt-in feature that requires explicitly
|
||||
* calling 12-bit-specific libjpeg API functions and using 12-bit-specific data
|
||||
* types, the unmodified portion of the libjpeg API still behaves as if it were
|
||||
* built for 8-bit precision, and JSAMPLE is still literally an 8-bit data
|
||||
* type. Thus, it is correct to define BITS_IN_JSAMPLE to 8 here.
|
||||
*/
|
||||
#ifndef BITS_IN_JSAMPLE
|
||||
#define BITS_IN_JSAMPLE 8
|
||||
#endif
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
|
||||
/* Define "boolean" as unsigned char, not int, per Windows custom */
|
||||
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
|
||||
typedef unsigned char boolean;
|
||||
#endif
|
||||
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
|
||||
|
||||
/* Define "INT32" as int, not long, per Windows custom */
|
||||
#if !(defined(_BASETSD_H_) || defined(_BASETSD_H)) /* don't conflict if basetsd.h already read */
|
||||
typedef short INT16;
|
||||
typedef signed int INT32;
|
||||
#endif
|
||||
#define XMD_H /* prevent jmorecfg.h from redefining it */
|
||||
|
||||
#else
|
||||
|
||||
/* Define if your (broken) compiler shifts signed values as if they were
|
||||
unsigned. */
|
||||
/* #undef RIGHT_SHIFT_IS_UNSIGNED */
|
||||
|
||||
#endif
|
||||
102
thirdparty/libjpeg-turbo/src/jconfigint.h
vendored
Normal file
102
thirdparty/libjpeg-turbo/src/jconfigint.h
vendored
Normal file
@@ -0,0 +1,102 @@
|
||||
// Originally generated by libjpeg-turbo's cmake build, then modified to support multiple platforms.
|
||||
|
||||
/* libjpeg-turbo build number */
|
||||
#define BUILD "20250317"
|
||||
|
||||
/* How to hide global symbols. */
|
||||
#ifndef HIDDEN
|
||||
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
|
||||
#define HIDDEN __attribute__((visibility("hidden")))
|
||||
#else
|
||||
#define HIDDEN
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Compiler's inline keyword */
|
||||
#undef inline
|
||||
|
||||
/* How to obtain function inlining. */
|
||||
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
|
||||
#define INLINE __inline__ __attribute__((always_inline))
|
||||
#else
|
||||
#define INLINE inline
|
||||
#endif
|
||||
|
||||
/* How to obtain thread-local storage */
|
||||
#if defined(_MSC_VER)
|
||||
#define THREAD_LOCAL __declspec(thread)
|
||||
#else
|
||||
#define THREAD_LOCAL __thread
|
||||
#endif
|
||||
|
||||
/* Define to the full name of this package. */
|
||||
#define PACKAGE_NAME "libjpeg-turbo"
|
||||
|
||||
/* Version number of package */
|
||||
#define VERSION "3.1.0"
|
||||
|
||||
/* The size of `size_t', as computed by sizeof. */
|
||||
#if defined(__SIZEOF_SIZE_T__)
|
||||
#define SIZEOF_SIZE_T __SIZEOF_SIZE_T__
|
||||
#elif defined(_WIN64)
|
||||
#define SIZEOF_SIZE_T 8
|
||||
#elif defined(_WIN32)
|
||||
#define SIZEOF_SIZE_T 4
|
||||
#else
|
||||
#error "Cannot determine size of size_t"
|
||||
#endif
|
||||
|
||||
/* Define if your compiler has __builtin_ctzl() and sizeof(unsigned long) == sizeof(size_t). */
|
||||
#if defined(__GNUC__)
|
||||
#define HAVE_BUILTIN_CTZL
|
||||
#endif
|
||||
|
||||
/* Define to 1 if you have the <intrin.h> header file. */
|
||||
/* #undef HAVE_INTRIN_H */
|
||||
|
||||
#if defined(_MSC_VER) && defined(HAVE_INTRIN_H)
|
||||
#if (SIZEOF_SIZE_T == 8)
|
||||
#define HAVE_BITSCANFORWARD64
|
||||
#elif (SIZEOF_SIZE_T == 4)
|
||||
#define HAVE_BITSCANFORWARD
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__has_attribute)
|
||||
#if __has_attribute(fallthrough)
|
||||
#define FALLTHROUGH __attribute__((fallthrough));
|
||||
#else
|
||||
#define FALLTHROUGH
|
||||
#endif
|
||||
#else
|
||||
#define FALLTHROUGH
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Define BITS_IN_JSAMPLE as either
|
||||
* 8 for 8-bit sample values (the usual setting)
|
||||
* 12 for 12-bit sample values
|
||||
* Only 8 and 12 are legal data precisions for lossy JPEG according to the
|
||||
* JPEG standard, and the IJG code does not support anything else!
|
||||
*/
|
||||
|
||||
#ifndef BITS_IN_JSAMPLE
|
||||
#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
|
||||
#endif
|
||||
|
||||
#undef C_ARITH_CODING_SUPPORTED
|
||||
#undef D_ARITH_CODING_SUPPORTED
|
||||
#undef WITH_SIMD
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
|
||||
/* Support arithmetic encoding */
|
||||
#define C_ARITH_CODING_SUPPORTED 1
|
||||
|
||||
/* Support arithmetic decoding */
|
||||
#define D_ARITH_CODING_SUPPORTED 1
|
||||
|
||||
/* Use accelerated SIMD routines. */
|
||||
//#define WITH_SIMD 1
|
||||
|
||||
#endif
|
||||
592
thirdparty/libjpeg-turbo/src/jcparam.c
vendored
Normal file
592
thirdparty/libjpeg-turbo/src/jcparam.c
vendored
Normal file
@@ -0,0 +1,592 @@
|
||||
/*
|
||||
* jcparam.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* Modified 2003-2008 by Guido Vollbeding.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2009-2011, 2018, 2023-2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains optional default-setting code for the JPEG compressor.
|
||||
* Applications do not have to use this file, but those that don't use it
|
||||
* must know a lot more about the innards of the JPEG code.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jstdhuff.c"
|
||||
|
||||
|
||||
/*
|
||||
* Quantization table setup routines
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_add_quant_table(j_compress_ptr cinfo, int which_tbl,
|
||||
const unsigned int *basic_table, int scale_factor,
|
||||
boolean force_baseline)
|
||||
/* Define a quantization table equal to the basic_table times
|
||||
* a scale factor (given as a percentage).
|
||||
* If force_baseline is TRUE, the computed quantization table entries
|
||||
* are limited to 1..255 for JPEG baseline compatibility.
|
||||
*/
|
||||
{
|
||||
JQUANT_TBL **qtblptr;
|
||||
int i;
|
||||
long temp;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
|
||||
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
|
||||
|
||||
qtblptr = &cinfo->quant_tbl_ptrs[which_tbl];
|
||||
|
||||
if (*qtblptr == NULL)
|
||||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr)cinfo);
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
temp = ((long)basic_table[i] * scale_factor + 50L) / 100L;
|
||||
/* limit the values to the valid range */
|
||||
if (temp <= 0L) temp = 1L;
|
||||
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
|
||||
if (force_baseline && temp > 255L)
|
||||
temp = 255L; /* limit to baseline range if requested */
|
||||
(*qtblptr)->quantval[i] = (UINT16)temp;
|
||||
}
|
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */
|
||||
(*qtblptr)->sent_table = FALSE;
|
||||
}
|
||||
|
||||
|
||||
/* These are the sample quantization tables given in Annex K (Clause K.1) of
|
||||
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
|
||||
* The spec says that the values given produce "good" quality, and
|
||||
* when divided by 2, "very good" quality.
|
||||
*/
|
||||
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
|
||||
16, 11, 10, 16, 24, 40, 51, 61,
|
||||
12, 12, 14, 19, 26, 58, 60, 55,
|
||||
14, 13, 16, 24, 40, 57, 69, 56,
|
||||
14, 17, 22, 29, 51, 87, 80, 62,
|
||||
18, 22, 37, 56, 68, 109, 103, 77,
|
||||
24, 35, 55, 64, 81, 104, 113, 92,
|
||||
49, 64, 78, 87, 103, 121, 120, 101,
|
||||
72, 92, 95, 98, 112, 100, 103, 99
|
||||
};
|
||||
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
|
||||
17, 18, 24, 47, 99, 99, 99, 99,
|
||||
18, 21, 26, 66, 99, 99, 99, 99,
|
||||
24, 26, 56, 99, 99, 99, 99, 99,
|
||||
47, 66, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99
|
||||
};
|
||||
|
||||
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
GLOBAL(void)
|
||||
jpeg_default_qtables(j_compress_ptr cinfo, boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||
* and straight percentage-scaling quality scales.
|
||||
* This entry point allows different scalings for luminance and chrominance.
|
||||
*/
|
||||
{
|
||||
/* Set up two quantization tables using the specified scaling */
|
||||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
|
||||
cinfo->q_scale_factor[0], force_baseline);
|
||||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
|
||||
cinfo->q_scale_factor[1], force_baseline);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_linear_quality(j_compress_ptr cinfo, int scale_factor,
|
||||
boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||
* and a straight percentage-scaling quality scale. In most cases it's better
|
||||
* to use jpeg_set_quality (below); this entry point is provided for
|
||||
* applications that insist on a linear percentage scaling.
|
||||
*/
|
||||
{
|
||||
/* Set up two quantization tables using the specified scaling */
|
||||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
|
||||
scale_factor, force_baseline);
|
||||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
|
||||
scale_factor, force_baseline);
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_quality_scaling(int quality)
|
||||
/* Convert a user-specified quality rating to a percentage scaling factor
|
||||
* for an underlying quantization table, using our recommended scaling curve.
|
||||
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
|
||||
*/
|
||||
{
|
||||
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
|
||||
if (quality <= 0) quality = 1;
|
||||
if (quality > 100) quality = 100;
|
||||
|
||||
/* The basic table is used as-is (scaling 100) for a quality of 50.
|
||||
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
|
||||
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
|
||||
* to make all the table entries 1 (hence, minimum quantization loss).
|
||||
* Qualities 1..50 are converted to scaling percentage 5000/Q.
|
||||
*/
|
||||
if (quality < 50)
|
||||
quality = 5000 / quality;
|
||||
else
|
||||
quality = 200 - quality * 2;
|
||||
|
||||
return quality;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_quality(j_compress_ptr cinfo, int quality, boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting, using default tables.
|
||||
* This is the standard quality-adjusting entry point for typical user
|
||||
* interfaces; only those who want detailed control over quantization tables
|
||||
* would use the preceding three routines directly.
|
||||
*/
|
||||
{
|
||||
/* Convert user 0-100 rating to percentage scaling */
|
||||
quality = jpeg_quality_scaling(quality);
|
||||
|
||||
/* Set up standard quality tables */
|
||||
jpeg_set_linear_quality(cinfo, quality, force_baseline);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Default parameter setup for compression.
|
||||
*
|
||||
* Applications that don't choose to use this routine must do their
|
||||
* own setup of all these parameters. Alternately, you can call this
|
||||
* to establish defaults and then alter parameters selectively. This
|
||||
* is the recommended approach since, if we add any new parameters,
|
||||
* your code will still work (they'll be set to reasonable defaults).
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_defaults(j_compress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* Allocate comp_info array large enough for maximum component count.
|
||||
* Array is made permanent in case application wants to compress
|
||||
* multiple images at same param settings.
|
||||
*/
|
||||
if (cinfo->comp_info == NULL)
|
||||
cinfo->comp_info = (jpeg_component_info *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT,
|
||||
MAX_COMPONENTS * sizeof(jpeg_component_info));
|
||||
|
||||
/* Initialize everything not dependent on the color space */
|
||||
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
cinfo->scale_num = 1; /* 1:1 scaling */
|
||||
cinfo->scale_denom = 1;
|
||||
#endif
|
||||
/* Set up two quantization tables using default quality of 75 */
|
||||
jpeg_set_quality(cinfo, 75, TRUE);
|
||||
/* Set up two Huffman tables */
|
||||
std_huff_tables((j_common_ptr)cinfo);
|
||||
|
||||
/* Initialize default arithmetic coding conditioning */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
cinfo->arith_dc_L[i] = 0;
|
||||
cinfo->arith_dc_U[i] = 1;
|
||||
cinfo->arith_ac_K[i] = 5;
|
||||
}
|
||||
|
||||
/* Default is no multiple-scan output */
|
||||
cinfo->scan_info = NULL;
|
||||
cinfo->num_scans = 0;
|
||||
|
||||
/* Default is lossy output */
|
||||
cinfo->master->lossless = FALSE;
|
||||
|
||||
/* Expect normal source image, not raw downsampled data */
|
||||
cinfo->raw_data_in = FALSE;
|
||||
|
||||
/* Use Huffman coding, not arithmetic coding, by default */
|
||||
cinfo->arith_code = FALSE;
|
||||
|
||||
/* By default, don't do extra passes to optimize entropy coding */
|
||||
cinfo->optimize_coding = FALSE;
|
||||
/* The standard Huffman tables are only valid for 8-bit data precision.
|
||||
* If the precision is higher, force optimization on so that usable
|
||||
* tables will be computed. This test can be removed if default tables
|
||||
* are supplied that are valid for the desired precision.
|
||||
*/
|
||||
if (cinfo->data_precision == 12)
|
||||
cinfo->optimize_coding = TRUE;
|
||||
|
||||
/* By default, use the simpler non-cosited sampling alignment */
|
||||
cinfo->CCIR601_sampling = FALSE;
|
||||
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
/* By default, apply fancy downsampling */
|
||||
cinfo->do_fancy_downsampling = TRUE;
|
||||
#endif
|
||||
|
||||
/* No input smoothing */
|
||||
cinfo->smoothing_factor = 0;
|
||||
|
||||
/* DCT algorithm preference */
|
||||
cinfo->dct_method = JDCT_DEFAULT;
|
||||
|
||||
/* No restart markers */
|
||||
cinfo->restart_interval = 0;
|
||||
cinfo->restart_in_rows = 0;
|
||||
|
||||
/* Fill in default JFIF marker parameters. Note that whether the marker
|
||||
* will actually be written is determined by jpeg_set_colorspace.
|
||||
*
|
||||
* By default, the library emits JFIF version code 1.01.
|
||||
* An application that wants to emit JFIF 1.02 extension markers should set
|
||||
* JFIF_minor_version to 2. We could probably get away with just defaulting
|
||||
* to 1.02, but there may still be some decoders in use that will complain
|
||||
* about that; saying 1.01 should minimize compatibility problems.
|
||||
*/
|
||||
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
|
||||
cinfo->JFIF_minor_version = 1;
|
||||
cinfo->density_unit = 0; /* Pixel size is unknown by default */
|
||||
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
|
||||
cinfo->Y_density = 1;
|
||||
|
||||
/* Choose JPEG colorspace based on input space, set defaults accordingly */
|
||||
|
||||
jpeg_default_colorspace(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Select an appropriate JPEG colorspace for in_color_space.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_default_colorspace(j_compress_ptr cinfo)
|
||||
{
|
||||
switch (cinfo->in_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
|
||||
break;
|
||||
case JCS_RGB:
|
||||
case JCS_EXT_RGB:
|
||||
case JCS_EXT_RGBX:
|
||||
case JCS_EXT_BGR:
|
||||
case JCS_EXT_BGRX:
|
||||
case JCS_EXT_XBGR:
|
||||
case JCS_EXT_XRGB:
|
||||
case JCS_EXT_RGBA:
|
||||
case JCS_EXT_BGRA:
|
||||
case JCS_EXT_ABGR:
|
||||
case JCS_EXT_ARGB:
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless)
|
||||
jpeg_set_colorspace(cinfo, JCS_RGB);
|
||||
else
|
||||
#endif
|
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
||||
break;
|
||||
case JCS_YCbCr:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCCK);
|
||||
break;
|
||||
case JCS_UNKNOWN:
|
||||
jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set the JPEG colorspace, and choose colorspace-dependent default values.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_colorspace(j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
|
||||
{
|
||||
jpeg_component_info *compptr;
|
||||
int ci;
|
||||
|
||||
#define SET_COMP(index, id, hsamp, vsamp, quant, dctbl, actbl) \
|
||||
(compptr = &cinfo->comp_info[index], \
|
||||
compptr->component_id = (id), \
|
||||
compptr->h_samp_factor = (hsamp), \
|
||||
compptr->v_samp_factor = (vsamp), \
|
||||
compptr->quant_tbl_no = (quant), \
|
||||
compptr->dc_tbl_no = (dctbl), \
|
||||
compptr->ac_tbl_no = (actbl) )
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* For all colorspaces, we use Q and Huff tables 0 for luminance components,
|
||||
* tables 1 for chrominance components.
|
||||
*/
|
||||
|
||||
cinfo->jpeg_color_space = colorspace;
|
||||
|
||||
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
|
||||
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
|
||||
|
||||
switch (colorspace) {
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||
cinfo->num_components = 1;
|
||||
/* JFIF specifies component ID 1 */
|
||||
SET_COMP(0, 1, 1, 1, 0, 0, 0);
|
||||
break;
|
||||
case JCS_RGB:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
|
||||
cinfo->num_components = 3;
|
||||
SET_COMP(0, 0x52 /* 'R' */, 1, 1, 0, 0, 0);
|
||||
SET_COMP(1, 0x47 /* 'G' */, 1, 1, 0, 0, 0);
|
||||
SET_COMP(2, 0x42 /* 'B' */, 1, 1, 0, 0, 0);
|
||||
break;
|
||||
case JCS_YCbCr:
|
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||
cinfo->num_components = 3;
|
||||
/* JFIF specifies component IDs 1,2,3 */
|
||||
/* We default to 2x2 subsamples of chrominance */
|
||||
SET_COMP(0, 1, 2, 2, 0, 0, 0);
|
||||
SET_COMP(1, 2, 1, 1, 1, 1, 1);
|
||||
SET_COMP(2, 3, 1, 1, 1, 1, 1);
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
|
||||
cinfo->num_components = 4;
|
||||
SET_COMP(0, 0x43 /* 'C' */, 1, 1, 0, 0, 0);
|
||||
SET_COMP(1, 0x4D /* 'M' */, 1, 1, 0, 0, 0);
|
||||
SET_COMP(2, 0x59 /* 'Y' */, 1, 1, 0, 0, 0);
|
||||
SET_COMP(3, 0x4B /* 'K' */, 1, 1, 0, 0, 0);
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
|
||||
cinfo->num_components = 4;
|
||||
SET_COMP(0, 1, 2, 2, 0, 0, 0);
|
||||
SET_COMP(1, 2, 1, 1, 1, 1, 1);
|
||||
SET_COMP(2, 3, 1, 1, 1, 1, 1);
|
||||
SET_COMP(3, 4, 2, 2, 0, 0, 0);
|
||||
break;
|
||||
case JCS_UNKNOWN:
|
||||
cinfo->num_components = cinfo->input_components;
|
||||
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
SET_COMP(ci, ci, 1, 1, 0, 0, 0);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
|
||||
LOCAL(jpeg_scan_info *)
|
||||
fill_a_scan(jpeg_scan_info *scanptr, int ci, int Ss, int Se, int Ah, int Al)
|
||||
/* Support routine: generate one scan for specified component */
|
||||
{
|
||||
scanptr->comps_in_scan = 1;
|
||||
scanptr->component_index[0] = ci;
|
||||
scanptr->Ss = Ss;
|
||||
scanptr->Se = Se;
|
||||
scanptr->Ah = Ah;
|
||||
scanptr->Al = Al;
|
||||
scanptr++;
|
||||
return scanptr;
|
||||
}
|
||||
|
||||
LOCAL(jpeg_scan_info *)
|
||||
fill_scans(jpeg_scan_info *scanptr, int ncomps, int Ss, int Se, int Ah, int Al)
|
||||
/* Support routine: generate one scan for each component */
|
||||
{
|
||||
int ci;
|
||||
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
scanptr->comps_in_scan = 1;
|
||||
scanptr->component_index[0] = ci;
|
||||
scanptr->Ss = Ss;
|
||||
scanptr->Se = Se;
|
||||
scanptr->Ah = Ah;
|
||||
scanptr->Al = Al;
|
||||
scanptr++;
|
||||
}
|
||||
return scanptr;
|
||||
}
|
||||
|
||||
LOCAL(jpeg_scan_info *)
|
||||
fill_dc_scans(jpeg_scan_info *scanptr, int ncomps, int Ah, int Al)
|
||||
/* Support routine: generate interleaved DC scan if possible, else N scans */
|
||||
{
|
||||
int ci;
|
||||
|
||||
if (ncomps <= MAX_COMPS_IN_SCAN) {
|
||||
/* Single interleaved DC scan */
|
||||
scanptr->comps_in_scan = ncomps;
|
||||
for (ci = 0; ci < ncomps; ci++)
|
||||
scanptr->component_index[ci] = ci;
|
||||
scanptr->Ss = scanptr->Se = 0;
|
||||
scanptr->Ah = Ah;
|
||||
scanptr->Al = Al;
|
||||
scanptr++;
|
||||
} else {
|
||||
/* Noninterleaved DC scan for each component */
|
||||
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
|
||||
}
|
||||
return scanptr;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create a recommended progressive-JPEG script.
|
||||
* cinfo->num_components and cinfo->jpeg_color_space must be correct.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_simple_progression(j_compress_ptr cinfo)
|
||||
{
|
||||
int ncomps = cinfo->num_components;
|
||||
int nscans;
|
||||
jpeg_scan_info *scanptr;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
cinfo->master->lossless = FALSE;
|
||||
jpeg_default_colorspace(cinfo);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Figure space needed for script. Calculation must match code below! */
|
||||
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
/* Custom script for YCbCr color images. */
|
||||
nscans = 10;
|
||||
} else {
|
||||
/* All-purpose script for other color spaces. */
|
||||
if (ncomps > MAX_COMPS_IN_SCAN)
|
||||
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
|
||||
else
|
||||
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
|
||||
}
|
||||
|
||||
/* Allocate space for script.
|
||||
* We need to put it in the permanent pool in case the application performs
|
||||
* multiple compressions without changing the settings. To avoid a memory
|
||||
* leak if jpeg_simple_progression is called repeatedly for the same JPEG
|
||||
* object, we try to re-use previously allocated space, and we allocate
|
||||
* enough space to handle YCbCr even if initially asked for grayscale.
|
||||
*/
|
||||
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
|
||||
cinfo->script_space_size = MAX(nscans, 10);
|
||||
cinfo->script_space = (jpeg_scan_info *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT,
|
||||
cinfo->script_space_size * sizeof(jpeg_scan_info));
|
||||
}
|
||||
scanptr = cinfo->script_space;
|
||||
cinfo->scan_info = scanptr;
|
||||
cinfo->num_scans = nscans;
|
||||
|
||||
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
/* Custom script for YCbCr color images. */
|
||||
/* Initial DC scan */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
|
||||
/* Initial AC scan: get some luma data out in a hurry */
|
||||
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
|
||||
/* Chroma data is too small to be worth expending many scans on */
|
||||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
|
||||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
|
||||
/* Complete spectral selection for luma AC */
|
||||
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
|
||||
/* Refine next bit of luma AC */
|
||||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
|
||||
/* Finish DC successive approximation */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
|
||||
/* Finish AC successive approximation */
|
||||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
|
||||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
|
||||
/* Luma bottom bit comes last since it's usually largest scan */
|
||||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
|
||||
} else {
|
||||
/* All-purpose script for other color spaces. */
|
||||
/* Successive approximation first pass */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
|
||||
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
|
||||
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
|
||||
/* Successive approximation second pass */
|
||||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
|
||||
/* Successive approximation final pass */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
|
||||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* C_PROGRESSIVE_SUPPORTED */
|
||||
|
||||
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
|
||||
/*
|
||||
* Enable lossless mode.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_enable_lossless(j_compress_ptr cinfo, int predictor_selection_value,
|
||||
int point_transform)
|
||||
{
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
cinfo->master->lossless = TRUE;
|
||||
cinfo->Ss = predictor_selection_value;
|
||||
cinfo->Se = 0;
|
||||
cinfo->Ah = 0;
|
||||
cinfo->Al = point_transform;
|
||||
|
||||
/* The JPEG spec simply gives the range 0..15 for Al (Pt), but that seems
|
||||
* wrong: the upper bound ought to depend on data precision. Perhaps they
|
||||
* really meant 0..N-1 for N-bit precision, which is what we allow here.
|
||||
* Values greater than or equal to the data precision will result in a blank
|
||||
* image.
|
||||
*/
|
||||
if (cinfo->Ss < 1 || cinfo->Ss > 7 ||
|
||||
cinfo->Al < 0 || cinfo->Al >= cinfo->data_precision)
|
||||
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
|
||||
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
|
||||
}
|
||||
|
||||
#endif /* C_LOSSLESS_SUPPORTED */
|
||||
1102
thirdparty/libjpeg-turbo/src/jcphuff.c
vendored
Normal file
1102
thirdparty/libjpeg-turbo/src/jcphuff.c
vendored
Normal file
File diff suppressed because it is too large
Load Diff
378
thirdparty/libjpeg-turbo/src/jcprepct.c
vendored
Normal file
378
thirdparty/libjpeg-turbo/src/jcprepct.c
vendored
Normal file
@@ -0,0 +1,378 @@
|
||||
/*
|
||||
* jcprepct.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2022, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains the compression preprocessing controller.
|
||||
* This controller manages the color conversion, downsampling,
|
||||
* and edge expansion steps.
|
||||
*
|
||||
* Most of the complexity here is associated with buffering input rows
|
||||
* as required by the downsampler. See the comments at the head of
|
||||
* jcsample.c for the downsampler's needs.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16 || defined(C_LOSSLESS_SUPPORTED)
|
||||
|
||||
/* At present, jcsample.c can request context rows only for smoothing.
|
||||
* In the future, we might also need context rows for CCIR601 sampling
|
||||
* or other more-complex downsampling procedures. The code to support
|
||||
* context rows should be compiled only if needed.
|
||||
*/
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
#define CONTEXT_ROWS_SUPPORTED
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* For the simple (no-context-row) case, we just need to buffer one
|
||||
* row group's worth of pixels for the downsampling step. At the bottom of
|
||||
* the image, we pad to a full row group by replicating the last pixel row.
|
||||
* The downsampler's last output row is then replicated if needed to pad
|
||||
* out to a full iMCU row.
|
||||
*
|
||||
* When providing context rows, we must buffer three row groups' worth of
|
||||
* pixels. Three row groups are physically allocated, but the row pointer
|
||||
* arrays are made five row groups high, with the extra pointers above and
|
||||
* below "wrapping around" to point to the last and first real row groups.
|
||||
* This allows the downsampler to access the proper context rows.
|
||||
* At the top and bottom of the image, we create dummy context rows by
|
||||
* copying the first or last real pixel row. This copying could be avoided
|
||||
* by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
|
||||
* trouble on the compression side.
|
||||
*/
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_prep_controller pub; /* public fields */
|
||||
|
||||
/* Downsampling input buffer. This buffer holds color-converted data
|
||||
* until we have enough to do a downsample step.
|
||||
*/
|
||||
_JSAMPARRAY color_buf[MAX_COMPONENTS];
|
||||
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in source image */
|
||||
int next_buf_row; /* index of next row to store in color_buf */
|
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
|
||||
int this_row_group; /* starting row index of group to process */
|
||||
int next_buf_stop; /* downsample when we reach this index */
|
||||
#endif
|
||||
} my_prep_controller;
|
||||
|
||||
typedef my_prep_controller *my_prep_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_prep(j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr)cinfo->prep;
|
||||
|
||||
if (pass_mode != JBUF_PASS_THRU)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
prep->rows_to_go = cinfo->image_height;
|
||||
/* Mark the conversion buffer empty */
|
||||
prep->next_buf_row = 0;
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
/* Preset additional state variables for context mode.
|
||||
* These aren't used in non-context mode, so we needn't test which mode.
|
||||
*/
|
||||
prep->this_row_group = 0;
|
||||
/* Set next_buf_stop to stop after two row groups have been read in. */
|
||||
prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Expand an image vertically from height input_rows to height output_rows,
|
||||
* by duplicating the bottom row.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
expand_bottom_edge(_JSAMPARRAY image_data, JDIMENSION num_cols, int input_rows,
|
||||
int output_rows)
|
||||
{
|
||||
register int row;
|
||||
|
||||
for (row = input_rows; row < output_rows; row++) {
|
||||
_jcopy_sample_rows(image_data, input_rows - 1, image_data, row, 1,
|
||||
num_cols);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the simple no-context case.
|
||||
*
|
||||
* Preprocessor output data is counted in "row groups". A row group
|
||||
* is defined to be v_samp_factor sample rows of each component.
|
||||
* Downsampling will produce this much data from each max_v_samp_factor
|
||||
* input rows.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
pre_process_data(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail,
|
||||
_JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr)cinfo->prep;
|
||||
int numrows, ci;
|
||||
JDIMENSION inrows;
|
||||
jpeg_component_info *compptr;
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
|
||||
while (*in_row_ctr < in_rows_avail &&
|
||||
*out_row_group_ctr < out_row_groups_avail) {
|
||||
/* Do color conversion to fill the conversion buffer. */
|
||||
inrows = in_rows_avail - *in_row_ctr;
|
||||
numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
|
||||
numrows = (int)MIN((JDIMENSION)numrows, inrows);
|
||||
(*cinfo->cconvert->_color_convert) (cinfo, input_buf + *in_row_ctr,
|
||||
prep->color_buf,
|
||||
(JDIMENSION)prep->next_buf_row,
|
||||
numrows);
|
||||
*in_row_ctr += numrows;
|
||||
prep->next_buf_row += numrows;
|
||||
prep->rows_to_go -= numrows;
|
||||
/* If at bottom of image, pad to fill the conversion buffer. */
|
||||
if (prep->rows_to_go == 0 &&
|
||||
prep->next_buf_row < cinfo->max_v_samp_factor) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
|
||||
prep->next_buf_row, cinfo->max_v_samp_factor);
|
||||
}
|
||||
prep->next_buf_row = cinfo->max_v_samp_factor;
|
||||
}
|
||||
/* If we've filled the conversion buffer, empty it. */
|
||||
if (prep->next_buf_row == cinfo->max_v_samp_factor) {
|
||||
(*cinfo->downsample->_downsample) (cinfo,
|
||||
prep->color_buf, (JDIMENSION)0,
|
||||
output_buf, *out_row_group_ctr);
|
||||
prep->next_buf_row = 0;
|
||||
(*out_row_group_ctr)++;
|
||||
}
|
||||
/* If at bottom of image, pad the output to a full iMCU height.
|
||||
* Note we assume the caller is providing a one-iMCU-height output buffer!
|
||||
*/
|
||||
if (prep->rows_to_go == 0 && *out_row_group_ctr < out_row_groups_avail) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
expand_bottom_edge(output_buf[ci],
|
||||
compptr->width_in_blocks * data_unit,
|
||||
(int)(*out_row_group_ctr * compptr->v_samp_factor),
|
||||
(int)(out_row_groups_avail * compptr->v_samp_factor));
|
||||
}
|
||||
*out_row_group_ctr = out_row_groups_avail;
|
||||
break; /* can exit outer loop without test */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the context case.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
pre_process_context(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail,
|
||||
_JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr)cinfo->prep;
|
||||
int numrows, ci;
|
||||
int buf_height = cinfo->max_v_samp_factor * 3;
|
||||
JDIMENSION inrows;
|
||||
|
||||
while (*out_row_group_ctr < out_row_groups_avail) {
|
||||
if (*in_row_ctr < in_rows_avail) {
|
||||
/* Do color conversion to fill the conversion buffer. */
|
||||
inrows = in_rows_avail - *in_row_ctr;
|
||||
numrows = prep->next_buf_stop - prep->next_buf_row;
|
||||
numrows = (int)MIN((JDIMENSION)numrows, inrows);
|
||||
(*cinfo->cconvert->_color_convert) (cinfo, input_buf + *in_row_ctr,
|
||||
prep->color_buf,
|
||||
(JDIMENSION)prep->next_buf_row,
|
||||
numrows);
|
||||
/* Pad at top of image, if first time through */
|
||||
if (prep->rows_to_go == cinfo->image_height) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
int row;
|
||||
for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
|
||||
_jcopy_sample_rows(prep->color_buf[ci], 0, prep->color_buf[ci],
|
||||
-row, 1, cinfo->image_width);
|
||||
}
|
||||
}
|
||||
}
|
||||
*in_row_ctr += numrows;
|
||||
prep->next_buf_row += numrows;
|
||||
prep->rows_to_go -= numrows;
|
||||
} else {
|
||||
/* Return for more data, unless we are at the bottom of the image. */
|
||||
if (prep->rows_to_go != 0)
|
||||
break;
|
||||
/* When at bottom of image, pad to fill the conversion buffer. */
|
||||
if (prep->next_buf_row < prep->next_buf_stop) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
|
||||
prep->next_buf_row, prep->next_buf_stop);
|
||||
}
|
||||
prep->next_buf_row = prep->next_buf_stop;
|
||||
}
|
||||
}
|
||||
/* If we've gotten enough data, downsample a row group. */
|
||||
if (prep->next_buf_row == prep->next_buf_stop) {
|
||||
(*cinfo->downsample->_downsample) (cinfo, prep->color_buf,
|
||||
(JDIMENSION)prep->this_row_group,
|
||||
output_buf, *out_row_group_ctr);
|
||||
(*out_row_group_ctr)++;
|
||||
/* Advance pointers with wraparound as necessary. */
|
||||
prep->this_row_group += cinfo->max_v_samp_factor;
|
||||
if (prep->this_row_group >= buf_height)
|
||||
prep->this_row_group = 0;
|
||||
if (prep->next_buf_row >= buf_height)
|
||||
prep->next_buf_row = 0;
|
||||
prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the wrapped-around downsampling input buffer needed for context mode.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
create_context_buffer(j_compress_ptr cinfo)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr)cinfo->prep;
|
||||
int rgroup_height = cinfo->max_v_samp_factor;
|
||||
int ci, i;
|
||||
jpeg_component_info *compptr;
|
||||
_JSAMPARRAY true_buffer, fake_buffer;
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
|
||||
/* Grab enough space for fake row pointers for all the components;
|
||||
* we need five row groups' worth of pointers for each component.
|
||||
*/
|
||||
fake_buffer = (_JSAMPARRAY)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(cinfo->num_components * 5 * rgroup_height) *
|
||||
sizeof(_JSAMPROW));
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Allocate the actual buffer space (3 row groups) for this component.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand
|
||||
* horizontally within the buffer, if it so chooses.
|
||||
*/
|
||||
true_buffer = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION)(((long)compptr->width_in_blocks * data_unit *
|
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
|
||||
(JDIMENSION)(3 * rgroup_height));
|
||||
/* Copy true buffer row pointers into the middle of the fake row array */
|
||||
memcpy(fake_buffer + rgroup_height, true_buffer,
|
||||
3 * rgroup_height * sizeof(_JSAMPROW));
|
||||
/* Fill in the above and below wraparound pointers */
|
||||
for (i = 0; i < rgroup_height; i++) {
|
||||
fake_buffer[i] = true_buffer[2 * rgroup_height + i];
|
||||
fake_buffer[4 * rgroup_height + i] = true_buffer[i];
|
||||
}
|
||||
prep->color_buf[ci] = fake_buffer + rgroup_height;
|
||||
fake_buffer += 5 * rgroup_height; /* point to space for next component */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* CONTEXT_ROWS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize preprocessing controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_c_prep_controller(j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_prep_ptr prep;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE || cinfo->data_precision < 2)
|
||||
#else
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE ||
|
||||
cinfo->data_precision < BITS_IN_JSAMPLE - 3)
|
||||
#endif
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
}
|
||||
|
||||
if (need_full_buffer) /* safety check */
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
prep = (my_prep_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_prep_controller));
|
||||
cinfo->prep = (struct jpeg_c_prep_controller *)prep;
|
||||
prep->pub.start_pass = start_pass_prep;
|
||||
|
||||
/* Allocate the color conversion buffer.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand
|
||||
* horizontally within the buffer, if it so chooses.
|
||||
*/
|
||||
if (cinfo->downsample->need_context_rows) {
|
||||
/* Set up to provide context rows */
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
prep->pub._pre_process_data = pre_process_context;
|
||||
create_context_buffer(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
/* No context, just make it tall enough for one row group */
|
||||
prep->pub._pre_process_data = pre_process_data;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
prep->color_buf[ci] = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION)(((long)compptr->width_in_blocks * data_unit *
|
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
|
||||
(JDIMENSION)cinfo->max_v_samp_factor);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 || defined(C_LOSSLESS_SUPPORTED) */
|
||||
556
thirdparty/libjpeg-turbo/src/jcsample.c
vendored
Normal file
556
thirdparty/libjpeg-turbo/src/jcsample.c
vendored
Normal file
@@ -0,0 +1,556 @@
|
||||
/*
|
||||
* jcsample.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||||
* Copyright (C) 2014, MIPS Technologies, Inc., California.
|
||||
* Copyright (C) 2015, 2019, 2022, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains downsampling routines.
|
||||
*
|
||||
* Downsampling input data is counted in "row groups". A row group
|
||||
* is defined to be max_v_samp_factor pixel rows of each component,
|
||||
* from which the downsampler produces v_samp_factor sample rows.
|
||||
* A single row group is processed in each call to the downsampler module.
|
||||
*
|
||||
* The downsampler is responsible for edge-expansion of its output data
|
||||
* to fill an integral number of DCT blocks horizontally. The source buffer
|
||||
* may be modified if it is helpful for this purpose (the source buffer is
|
||||
* allocated wide enough to correspond to the desired output width).
|
||||
* The caller (the prep controller) is responsible for vertical padding.
|
||||
*
|
||||
* The downsampler may request "context rows" by setting need_context_rows
|
||||
* during startup. In this case, the input arrays will contain at least
|
||||
* one row group's worth of pixels above and below the passed-in data;
|
||||
* the caller will create dummy rows at image top and bottom by replicating
|
||||
* the first or last real pixel row.
|
||||
*
|
||||
* An excellent reference for image resampling is
|
||||
* Digital Image Warping, George Wolberg, 1990.
|
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
||||
*
|
||||
* The downsampling algorithm used here is a simple average of the source
|
||||
* pixels covered by the output pixel. The hi-falutin sampling literature
|
||||
* refers to this as a "box filter". In general the characteristics of a box
|
||||
* filter are not very good, but for the specific cases we normally use (1:1
|
||||
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
|
||||
* nearly so bad. If you intend to use other sampling ratios, you'd be well
|
||||
* advised to improve this code.
|
||||
*
|
||||
* A simple input-smoothing capability is provided. This is mainly intended
|
||||
* for cleaning up color-dithered GIF input files (if you find it inadequate,
|
||||
* we suggest using an external filtering program such as pnmconvol). When
|
||||
* enabled, each input pixel P is replaced by a weighted sum of itself and its
|
||||
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
|
||||
* where SF = (smoothing_factor / 1024).
|
||||
* Currently, smoothing is only supported for 2h2v sampling factors.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jsimd.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16 || defined(C_LOSSLESS_SUPPORTED)
|
||||
|
||||
/* Pointer to routine to downsample a single component */
|
||||
typedef void (*downsample1_ptr) (j_compress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data,
|
||||
_JSAMPARRAY output_data);
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_downsampler pub; /* public fields */
|
||||
|
||||
/* Downsampling method pointers, one per component */
|
||||
downsample1_ptr methods[MAX_COMPONENTS];
|
||||
} my_downsampler;
|
||||
|
||||
typedef my_downsampler *my_downsample_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a downsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_downsample(j_compress_ptr cinfo)
|
||||
{
|
||||
/* no work for now */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Expand a component horizontally from width input_cols to width output_cols,
|
||||
* by duplicating the rightmost samples.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
expand_right_edge(_JSAMPARRAY image_data, int num_rows, JDIMENSION input_cols,
|
||||
JDIMENSION output_cols)
|
||||
{
|
||||
register _JSAMPROW ptr;
|
||||
register _JSAMPLE pixval;
|
||||
register int count;
|
||||
int row;
|
||||
int numcols = (int)(output_cols - input_cols);
|
||||
|
||||
if (numcols > 0) {
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
ptr = image_data[row] + input_cols;
|
||||
pixval = ptr[-1];
|
||||
for (count = numcols; count > 0; count--)
|
||||
*ptr++ = pixval;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Do downsampling for a whole row group (all components).
|
||||
*
|
||||
* In this version we simply downsample each component independently.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
sep_downsample(j_compress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_index, _JSAMPIMAGE output_buf,
|
||||
JDIMENSION out_row_group_index)
|
||||
{
|
||||
my_downsample_ptr downsample = (my_downsample_ptr)cinfo->downsample;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
_JSAMPARRAY in_ptr, out_ptr;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
in_ptr = input_buf[ci] + in_row_index;
|
||||
out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
|
||||
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* One row group is processed per call.
|
||||
* This version handles arbitrary integral sampling ratios, without smoothing.
|
||||
* Note that this version is not actually used for customary sampling ratios.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
int_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
|
||||
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * data_unit;
|
||||
_JSAMPROW inptr, outptr;
|
||||
JLONG outvalue;
|
||||
|
||||
h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
|
||||
v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
|
||||
numpix = h_expand * v_expand;
|
||||
numpix2 = numpix / 2;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width,
|
||||
output_cols * h_expand);
|
||||
|
||||
inrow = 0;
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
for (outcol = 0, outcol_h = 0; outcol < output_cols;
|
||||
outcol++, outcol_h += h_expand) {
|
||||
outvalue = 0;
|
||||
for (v = 0; v < v_expand; v++) {
|
||||
inptr = input_data[inrow + v] + outcol_h;
|
||||
for (h = 0; h < h_expand; h++) {
|
||||
outvalue += (JLONG)(*inptr++);
|
||||
}
|
||||
}
|
||||
*outptr++ = (_JSAMPLE)((outvalue + numpix2) / numpix);
|
||||
}
|
||||
inrow += v_expand;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the special case of a full-size component,
|
||||
* without smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
fullsize_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY output_data)
|
||||
{
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
|
||||
/* Copy the data */
|
||||
_jcopy_sample_rows(input_data, 0, output_data, 0, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width);
|
||||
/* Edge-expand */
|
||||
expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
|
||||
compptr->width_in_blocks * data_unit);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the common case of 2:1 horizontal and 1:1 vertical,
|
||||
* without smoothing.
|
||||
*
|
||||
* A note about the "bias" calculations: when rounding fractional values to
|
||||
* integer, we do not want to always round 0.5 up to the next integer.
|
||||
* If we did that, we'd introduce a noticeable bias towards larger values.
|
||||
* Instead, this code is arranged so that 0.5 will be rounded up or down at
|
||||
* alternate pixel locations (a simple ordered dither pattern).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY output_data)
|
||||
{
|
||||
int outrow;
|
||||
JDIMENSION outcol;
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * data_unit;
|
||||
register _JSAMPROW inptr, outptr;
|
||||
register int bias;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width,
|
||||
output_cols * 2);
|
||||
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
inptr = input_data[outrow];
|
||||
bias = 0; /* bias = 0,1,0,1,... for successive samples */
|
||||
for (outcol = 0; outcol < output_cols; outcol++) {
|
||||
*outptr++ = (_JSAMPLE)((inptr[0] + inptr[1] + bias) >> 1);
|
||||
bias ^= 1; /* 0=>1, 1=>0 */
|
||||
inptr += 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
||||
* without smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow, outrow;
|
||||
JDIMENSION outcol;
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * data_unit;
|
||||
register _JSAMPROW inptr0, inptr1, outptr;
|
||||
register int bias;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width,
|
||||
output_cols * 2);
|
||||
|
||||
inrow = 0;
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
inptr0 = input_data[inrow];
|
||||
inptr1 = input_data[inrow + 1];
|
||||
bias = 1; /* bias = 1,2,1,2,... for successive samples */
|
||||
for (outcol = 0; outcol < output_cols; outcol++) {
|
||||
*outptr++ = (_JSAMPLE)
|
||||
((inptr0[0] + inptr0[1] + inptr1[0] + inptr1[1] + bias) >> 2);
|
||||
bias ^= 3; /* 1=>2, 2=>1 */
|
||||
inptr0 += 2; inptr1 += 2;
|
||||
}
|
||||
inrow += 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
||||
* with smoothing. One row of context is required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow, outrow;
|
||||
JDIMENSION colctr;
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * data_unit;
|
||||
register _JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
|
||||
JLONG membersum, neighsum, memberscale, neighscale;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
||||
cinfo->image_width, output_cols * 2);
|
||||
|
||||
/* We don't bother to form the individual "smoothed" input pixel values;
|
||||
* we can directly compute the output which is the average of the four
|
||||
* smoothed values. Each of the four member pixels contributes a fraction
|
||||
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three
|
||||
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
|
||||
* output. The four corner-adjacent neighbor pixels contribute a fraction
|
||||
* SF to just one smoothed pixel, or SF/4 to the final output; while the
|
||||
* eight edge-adjacent neighbors contribute SF to each of two smoothed
|
||||
* pixels, or SF/2 overall. In order to use integer arithmetic, these
|
||||
* factors are scaled by 2^16 = 65536.
|
||||
* Also recall that SF = smoothing_factor / 1024.
|
||||
*/
|
||||
|
||||
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
|
||||
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
|
||||
|
||||
inrow = 0;
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
inptr0 = input_data[inrow];
|
||||
inptr1 = input_data[inrow + 1];
|
||||
above_ptr = input_data[inrow - 1];
|
||||
below_ptr = input_data[inrow + 2];
|
||||
|
||||
/* Special case for first column: pretend column -1 is same as column 0 */
|
||||
membersum = inptr0[0] + inptr0[1] + inptr1[0] + inptr1[1];
|
||||
neighsum = above_ptr[0] + above_ptr[1] + below_ptr[0] + below_ptr[1] +
|
||||
inptr0[0] + inptr0[2] + inptr1[0] + inptr1[2];
|
||||
neighsum += neighsum;
|
||||
neighsum += above_ptr[0] + above_ptr[2] + below_ptr[0] + below_ptr[2];
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (_JSAMPLE)((membersum + 32768) >> 16);
|
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
||||
/* sum of pixels directly mapped to this output element */
|
||||
membersum = inptr0[0] + inptr0[1] + inptr1[0] + inptr1[1];
|
||||
/* sum of edge-neighbor pixels */
|
||||
neighsum = above_ptr[0] + above_ptr[1] + below_ptr[0] + below_ptr[1] +
|
||||
inptr0[-1] + inptr0[2] + inptr1[-1] + inptr1[2];
|
||||
/* The edge-neighbors count twice as much as corner-neighbors */
|
||||
neighsum += neighsum;
|
||||
/* Add in the corner-neighbors */
|
||||
neighsum += above_ptr[-1] + above_ptr[2] + below_ptr[-1] + below_ptr[2];
|
||||
/* form final output scaled up by 2^16 */
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
/* round, descale and output it */
|
||||
*outptr++ = (_JSAMPLE)((membersum + 32768) >> 16);
|
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
membersum = inptr0[0] + inptr0[1] + inptr1[0] + inptr1[1];
|
||||
neighsum = above_ptr[0] + above_ptr[1] + below_ptr[0] + below_ptr[1] +
|
||||
inptr0[-1] + inptr0[1] + inptr1[-1] + inptr1[1];
|
||||
neighsum += neighsum;
|
||||
neighsum += above_ptr[-1] + above_ptr[1] + below_ptr[-1] + below_ptr[1];
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr = (_JSAMPLE)((membersum + 32768) >> 16);
|
||||
|
||||
inrow += 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the special case of a full-size component,
|
||||
* with smoothing. One row of context is required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
fullsize_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY output_data)
|
||||
{
|
||||
int outrow;
|
||||
JDIMENSION colctr;
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * data_unit;
|
||||
register _JSAMPROW inptr, above_ptr, below_ptr, outptr;
|
||||
JLONG membersum, neighsum, memberscale, neighscale;
|
||||
int colsum, lastcolsum, nextcolsum;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
||||
cinfo->image_width, output_cols);
|
||||
|
||||
/* Each of the eight neighbor pixels contributes a fraction SF to the
|
||||
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
|
||||
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
|
||||
* Also recall that SF = smoothing_factor / 1024.
|
||||
*/
|
||||
|
||||
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
|
||||
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
|
||||
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
inptr = input_data[outrow];
|
||||
above_ptr = input_data[outrow - 1];
|
||||
below_ptr = input_data[outrow + 1];
|
||||
|
||||
/* Special case for first column */
|
||||
colsum = (*above_ptr++) + (*below_ptr++) + inptr[0];
|
||||
membersum = *inptr++;
|
||||
nextcolsum = above_ptr[0] + below_ptr[0] + inptr[0];
|
||||
neighsum = colsum + (colsum - membersum) + nextcolsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (_JSAMPLE)((membersum + 32768) >> 16);
|
||||
lastcolsum = colsum; colsum = nextcolsum;
|
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
||||
membersum = *inptr++;
|
||||
above_ptr++; below_ptr++;
|
||||
nextcolsum = above_ptr[0] + below_ptr[0] + inptr[0];
|
||||
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (_JSAMPLE)((membersum + 32768) >> 16);
|
||||
lastcolsum = colsum; colsum = nextcolsum;
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
membersum = *inptr;
|
||||
neighsum = lastcolsum + (colsum - membersum) + colsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr = (_JSAMPLE)((membersum + 32768) >> 16);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* INPUT_SMOOTHING_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for downsampling.
|
||||
* Note that we must select a routine for each component.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_downsampler(j_compress_ptr cinfo)
|
||||
{
|
||||
my_downsample_ptr downsample;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
boolean smoothok = TRUE;
|
||||
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE || cinfo->data_precision < 2)
|
||||
#else
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE ||
|
||||
cinfo->data_precision < BITS_IN_JSAMPLE - 3)
|
||||
#endif
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
}
|
||||
|
||||
downsample = (my_downsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_downsampler));
|
||||
cinfo->downsample = (struct jpeg_downsampler *)downsample;
|
||||
downsample->pub.start_pass = start_pass_downsample;
|
||||
downsample->pub._downsample = sep_downsample;
|
||||
downsample->pub.need_context_rows = FALSE;
|
||||
|
||||
if (cinfo->CCIR601_sampling)
|
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
||||
|
||||
/* Verify we can handle the sampling factors, and set up method pointers */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
|
||||
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor) {
|
||||
downsample->methods[ci] = fullsize_smooth_downsample;
|
||||
downsample->pub.need_context_rows = TRUE;
|
||||
} else
|
||||
#endif
|
||||
downsample->methods[ci] = fullsize_downsample;
|
||||
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
|
||||
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
|
||||
smoothok = FALSE;
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_h2v1_downsample())
|
||||
downsample->methods[ci] = jsimd_h2v1_downsample;
|
||||
else
|
||||
#endif
|
||||
downsample->methods[ci] = h2v1_downsample;
|
||||
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
|
||||
compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor) {
|
||||
#if defined(WITH_SIMD) && defined(__mips__)
|
||||
if (jsimd_can_h2v2_smooth_downsample())
|
||||
downsample->methods[ci] = jsimd_h2v2_smooth_downsample;
|
||||
else
|
||||
#endif
|
||||
downsample->methods[ci] = h2v2_smooth_downsample;
|
||||
downsample->pub.need_context_rows = TRUE;
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_h2v2_downsample())
|
||||
downsample->methods[ci] = jsimd_h2v2_downsample;
|
||||
else
|
||||
#endif
|
||||
downsample->methods[ci] = h2v2_downsample;
|
||||
}
|
||||
} else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
|
||||
(cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
|
||||
smoothok = FALSE;
|
||||
downsample->methods[ci] = int_downsample;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
||||
}
|
||||
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor && !smoothok)
|
||||
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 || defined(C_LOSSLESS_SUPPORTED) */
|
||||
415
thirdparty/libjpeg-turbo/src/jctrans.c
vendored
Normal file
415
thirdparty/libjpeg-turbo/src/jctrans.c
vendored
Normal file
@@ -0,0 +1,415 @@
|
||||
/*
|
||||
* jctrans.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1995-1998, Thomas G. Lane.
|
||||
* Modified 2000-2009 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2020, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains library routines for transcoding compression,
|
||||
* that is, writing raw DCT coefficient arrays to an output JPEG file.
|
||||
* The routines in jcapimin.c will also be needed by a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jpegapicomp.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
LOCAL(void) transencode_master_selection(j_compress_ptr cinfo,
|
||||
jvirt_barray_ptr *coef_arrays);
|
||||
LOCAL(void) transencode_coef_controller(j_compress_ptr cinfo,
|
||||
jvirt_barray_ptr *coef_arrays);
|
||||
|
||||
|
||||
/*
|
||||
* Compression initialization for writing raw-coefficient data.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
* Call jpeg_finish_compress() to actually write the data.
|
||||
*
|
||||
* The number of passed virtual arrays must match cinfo->num_components.
|
||||
* Note that the virtual arrays need not be filled or even realized at
|
||||
* the time write_coefficients is called; indeed, if the virtual arrays
|
||||
* were requested from this compression object's memory manager, they
|
||||
* typically will be realized during this routine and filled afterwards.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_coefficients(j_compress_ptr cinfo, jvirt_barray_ptr *coef_arrays)
|
||||
{
|
||||
if (cinfo->master->lossless)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Mark all tables to be written */
|
||||
jpeg_suppress_tables(cinfo, FALSE);
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr)cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Perform master selection of active modules */
|
||||
transencode_master_selection(cinfo, coef_arrays);
|
||||
/* Wait for jpeg_finish_compress() call */
|
||||
cinfo->next_scanline = 0; /* so jpeg_write_marker works */
|
||||
cinfo->global_state = CSTATE_WRCOEFS;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the compression object with default parameters,
|
||||
* then copy from the source object all parameters needed for lossless
|
||||
* transcoding. Parameters that can be varied without loss (such as
|
||||
* scan script and Huffman optimization) are left in their default states.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_copy_critical_parameters(j_decompress_ptr srcinfo, j_compress_ptr dstinfo)
|
||||
{
|
||||
JQUANT_TBL **qtblptr;
|
||||
jpeg_component_info *incomp, *outcomp;
|
||||
JQUANT_TBL *c_quant, *slot_quant;
|
||||
int tblno, ci, coefi;
|
||||
|
||||
if (srcinfo->master->lossless)
|
||||
ERREXIT(dstinfo, JERR_NOTIMPL);
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (dstinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
|
||||
/* Copy fundamental image dimensions */
|
||||
dstinfo->image_width = srcinfo->image_width;
|
||||
dstinfo->image_height = srcinfo->image_height;
|
||||
dstinfo->input_components = srcinfo->num_components;
|
||||
dstinfo->in_color_space = srcinfo->jpeg_color_space;
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
dstinfo->jpeg_width = srcinfo->output_width;
|
||||
dstinfo->jpeg_height = srcinfo->output_height;
|
||||
dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size;
|
||||
dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size;
|
||||
#endif
|
||||
/* Initialize all parameters to default values */
|
||||
jpeg_set_defaults(dstinfo);
|
||||
/* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
|
||||
* Fix it to get the right header markers for the image colorspace.
|
||||
*/
|
||||
jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
|
||||
dstinfo->data_precision = srcinfo->data_precision;
|
||||
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
|
||||
/* Copy the source's quantization tables. */
|
||||
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
|
||||
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
|
||||
qtblptr = &dstinfo->quant_tbl_ptrs[tblno];
|
||||
if (*qtblptr == NULL)
|
||||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr)dstinfo);
|
||||
memcpy((*qtblptr)->quantval, srcinfo->quant_tbl_ptrs[tblno]->quantval,
|
||||
sizeof((*qtblptr)->quantval));
|
||||
(*qtblptr)->sent_table = FALSE;
|
||||
}
|
||||
}
|
||||
/* Copy the source's per-component info.
|
||||
* Note we assume jpeg_set_defaults has allocated the dest comp_info array.
|
||||
*/
|
||||
dstinfo->num_components = srcinfo->num_components;
|
||||
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
|
||||
ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
|
||||
outcomp->component_id = incomp->component_id;
|
||||
outcomp->h_samp_factor = incomp->h_samp_factor;
|
||||
outcomp->v_samp_factor = incomp->v_samp_factor;
|
||||
outcomp->quant_tbl_no = incomp->quant_tbl_no;
|
||||
/* Make sure saved quantization table for component matches the qtable
|
||||
* slot. If not, the input file re-used this qtable slot.
|
||||
* IJG encoder currently cannot duplicate this.
|
||||
*/
|
||||
tblno = outcomp->quant_tbl_no;
|
||||
if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
|
||||
srcinfo->quant_tbl_ptrs[tblno] == NULL)
|
||||
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
|
||||
slot_quant = srcinfo->quant_tbl_ptrs[tblno];
|
||||
c_quant = incomp->quant_table;
|
||||
if (c_quant != NULL) {
|
||||
for (coefi = 0; coefi < DCTSIZE2; coefi++) {
|
||||
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
|
||||
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
|
||||
}
|
||||
}
|
||||
/* Note: we do not copy the source's Huffman table assignments;
|
||||
* instead we rely on jpeg_set_colorspace to have made a suitable choice.
|
||||
*/
|
||||
}
|
||||
/* Also copy JFIF version and resolution information, if available.
|
||||
* Strictly speaking this isn't "critical" info, but it's nearly
|
||||
* always appropriate to copy it if available. In particular,
|
||||
* if the application chooses to copy JFIF 1.02 extension markers from
|
||||
* the source file, we need to copy the version to make sure we don't
|
||||
* emit a file that has 1.02 extensions but a claimed version of 1.01.
|
||||
* We will *not*, however, copy version info from mislabeled "2.01" files.
|
||||
*/
|
||||
if (srcinfo->saw_JFIF_marker) {
|
||||
if (srcinfo->JFIF_major_version == 1) {
|
||||
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
|
||||
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
|
||||
}
|
||||
dstinfo->density_unit = srcinfo->density_unit;
|
||||
dstinfo->X_density = srcinfo->X_density;
|
||||
dstinfo->Y_density = srcinfo->Y_density;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of compression modules for transcoding.
|
||||
* This substitutes for jcinit.c's initialization of the full compressor.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
transencode_master_selection(j_compress_ptr cinfo,
|
||||
jvirt_barray_ptr *coef_arrays)
|
||||
{
|
||||
/* Although we don't actually use input_components for transcoding,
|
||||
* jcmaster.c's initial_setup will complain if input_components is 0.
|
||||
*/
|
||||
cinfo->input_components = 1;
|
||||
/* Initialize master control (includes parameter checking/processing) */
|
||||
jinit_c_master_control(cinfo, TRUE /* transcode only */);
|
||||
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
#ifdef C_ARITH_CODING_SUPPORTED
|
||||
jinit_arith_encoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
#endif
|
||||
} else {
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
jinit_phuff_encoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else
|
||||
jinit_huff_encoder(cinfo);
|
||||
}
|
||||
|
||||
/* We need a special coefficient buffer controller. */
|
||||
transencode_coef_controller(cinfo, coef_arrays);
|
||||
|
||||
jinit_marker_writer(cinfo);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr)cinfo);
|
||||
|
||||
/* Write the datastream header (SOI, JFIF) immediately.
|
||||
* Frame and scan headers are postponed till later.
|
||||
* This lets application insert special markers after the SOI.
|
||||
*/
|
||||
(*cinfo->marker->write_file_header) (cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The rest of this file is a special implementation of the coefficient
|
||||
* buffer controller. This is similar to jccoefct.c, but it handles only
|
||||
* output from presupplied virtual arrays. Furthermore, we generate any
|
||||
* dummy padding blocks on-the-fly rather than expecting them to be present
|
||||
* in the arrays.
|
||||
*/
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_coef_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
||||
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
|
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||
|
||||
/* Virtual block array for each component. */
|
||||
jvirt_barray_ptr *whole_image;
|
||||
|
||||
/* Workspace for constructing dummy blocks at right/bottom edges. */
|
||||
JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||
} my_coef_controller;
|
||||
|
||||
typedef my_coef_controller *my_coef_ptr;
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
start_iMCU_row(j_compress_ptr cinfo)
|
||||
/* Reset within-iMCU-row counters for a new row */
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||
* But at the bottom of the image, process only what's left.
|
||||
*/
|
||||
if (cinfo->comps_in_scan > 1) {
|
||||
coef->MCU_rows_per_iMCU_row = 1;
|
||||
} else {
|
||||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows - 1))
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||
else
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||
}
|
||||
|
||||
coef->mcu_ctr = 0;
|
||||
coef->MCU_vert_offset = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_coef(j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
|
||||
if (pass_mode != JBUF_CRANK_DEST)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
coef->iMCU_row_num = 0;
|
||||
start_iMCU_row(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the scan.
|
||||
* The data is obtained from the virtual arrays and fed to the entropy coder.
|
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||
*
|
||||
* NB: input_buf is ignored; it is likely to be a NULL pointer.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_output(j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
int blkn, ci, xindex, yindex, yoffset, blockcnt;
|
||||
JDIMENSION start_col;
|
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||
JBLOCKROW buffer_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Align the virtual buffers for the components used in this scan. */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr)cinfo, coef->whole_image[compptr->component_index],
|
||||
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||
(JDIMENSION)compptr->v_samp_factor, FALSE);
|
||||
}
|
||||
|
||||
/* Loop to process one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
||||
MCU_col_num++) {
|
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_width;
|
||||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width :
|
||||
compptr->last_col_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
if (coef->iMCU_row_num < last_iMCU_row ||
|
||||
yindex + yoffset < compptr->last_row_height) {
|
||||
/* Fill in pointers to real blocks in this row */
|
||||
buffer_ptr = buffer[ci][yindex + yoffset] + start_col;
|
||||
for (xindex = 0; xindex < blockcnt; xindex++)
|
||||
MCU_buffer[blkn++] = buffer_ptr++;
|
||||
} else {
|
||||
/* At bottom of image, need a whole row of dummy blocks */
|
||||
xindex = 0;
|
||||
}
|
||||
/* Fill in any dummy blocks needed in this row.
|
||||
* Dummy blocks are filled in the same way as in jccoefct.c:
|
||||
* all zeroes in the AC entries, DC entries equal to previous
|
||||
* block's DC value. The init routine has already zeroed the
|
||||
* AC entries, so we need only set the DC entries correctly.
|
||||
*/
|
||||
for (; xindex < compptr->MCU_width; xindex++) {
|
||||
MCU_buffer[blkn] = coef->dummy_buffer[blkn];
|
||||
MCU_buffer[blkn][0][0] = MCU_buffer[blkn - 1][0][0];
|
||||
blkn++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. */
|
||||
if (!(*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->mcu_ctr = MCU_col_num;
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->mcu_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
coef->iMCU_row_num++;
|
||||
start_iMCU_row(cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_output_12(j_compress_ptr cinfo, J12SAMPIMAGE input_buf)
|
||||
{
|
||||
return compress_output(cinfo, (JSAMPIMAGE)input_buf);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller.
|
||||
*
|
||||
* Each passed coefficient array must be the right size for that
|
||||
* coefficient: width_in_blocks wide and height_in_blocks high,
|
||||
* with unitheight at least v_samp_factor.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
transencode_coef_controller(j_compress_ptr cinfo,
|
||||
jvirt_barray_ptr *coef_arrays)
|
||||
{
|
||||
my_coef_ptr coef;
|
||||
JBLOCKROW buffer;
|
||||
int i;
|
||||
|
||||
coef = (my_coef_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_coef_controller));
|
||||
cinfo->coef = (struct jpeg_c_coef_controller *)coef;
|
||||
coef->pub.start_pass = start_pass_coef;
|
||||
coef->pub.compress_data = compress_output;
|
||||
coef->pub.compress_data_12 = compress_output_12;
|
||||
|
||||
/* Save pointer to virtual arrays */
|
||||
coef->whole_image = coef_arrays;
|
||||
|
||||
/* Allocate and pre-zero space for dummy DCT blocks. */
|
||||
buffer = (JBLOCKROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
|
||||
jzero_far((void *)buffer, C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
|
||||
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
|
||||
coef->dummy_buffer[i] = buffer + i;
|
||||
}
|
||||
}
|
||||
421
thirdparty/libjpeg-turbo/src/jdapimin.c
vendored
Normal file
421
thirdparty/libjpeg-turbo/src/jdapimin.c
vendored
Normal file
@@ -0,0 +1,421 @@
|
||||
/*
|
||||
* jdapimin.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2016, 2022, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains application interface code for the decompression half
|
||||
* of the JPEG library. These are the "minimum" API routines that may be
|
||||
* needed in either the normal full-decompression case or the
|
||||
* transcoding-only case.
|
||||
*
|
||||
* Most of the routines intended to be called directly by an application
|
||||
* are in this file or in jdapistd.c. But also see jcomapi.c for routines
|
||||
* shared by compression and decompression, and jdtrans.c for the transcoding
|
||||
* case.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdmaster.h"
|
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG decompression object.
|
||||
* The error manager must already be set up (in case memory manager fails).
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_CreateDecompress(j_decompress_ptr cinfo, int version, size_t structsize)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Guard against version mismatches between library and caller. */
|
||||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
|
||||
if (version != JPEG_LIB_VERSION)
|
||||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
|
||||
if (structsize != sizeof(struct jpeg_decompress_struct))
|
||||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
|
||||
(int)sizeof(struct jpeg_decompress_struct), (int)structsize);
|
||||
|
||||
/* For debugging purposes, we zero the whole master structure.
|
||||
* But the application has already set the err pointer, and may have set
|
||||
* client_data, so we have to save and restore those fields.
|
||||
* Note: if application hasn't set client_data, tools like Purify may
|
||||
* complain here.
|
||||
*/
|
||||
{
|
||||
struct jpeg_error_mgr *err = cinfo->err;
|
||||
void *client_data = cinfo->client_data; /* ignore Purify complaint here */
|
||||
memset(cinfo, 0, sizeof(struct jpeg_decompress_struct));
|
||||
cinfo->err = err;
|
||||
cinfo->client_data = client_data;
|
||||
}
|
||||
cinfo->is_decompressor = TRUE;
|
||||
|
||||
/* Initialize a memory manager instance for this object */
|
||||
jinit_memory_mgr((j_common_ptr)cinfo);
|
||||
|
||||
/* Zero out pointers to permanent structures. */
|
||||
cinfo->progress = NULL;
|
||||
cinfo->src = NULL;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++)
|
||||
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||
}
|
||||
|
||||
/* Initialize marker processor so application can override methods
|
||||
* for COM, APPn markers before calling jpeg_read_header.
|
||||
*/
|
||||
cinfo->marker_list = NULL;
|
||||
jinit_marker_reader(cinfo);
|
||||
|
||||
/* And initialize the overall input controller. */
|
||||
jinit_input_controller(cinfo);
|
||||
|
||||
cinfo->data_precision = BITS_IN_JSAMPLE;
|
||||
|
||||
/* OK, I'm ready */
|
||||
cinfo->global_state = DSTATE_START;
|
||||
|
||||
/* The master struct is used to store extension parameters, so we allocate it
|
||||
* here.
|
||||
*/
|
||||
cinfo->master = (struct jpeg_decomp_master *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT,
|
||||
sizeof(my_decomp_master));
|
||||
memset(cinfo->master, 0, sizeof(my_decomp_master));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG decompression object
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_destroy_decompress(j_decompress_ptr cinfo)
|
||||
{
|
||||
jpeg_destroy((j_common_ptr)cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG decompression operation,
|
||||
* but don't destroy the object itself.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_abort_decompress(j_decompress_ptr cinfo)
|
||||
{
|
||||
jpeg_abort((j_common_ptr)cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set default decompression parameters.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
default_decompress_parms(j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Guess the input colorspace, and set output colorspace accordingly. */
|
||||
/* (Wish JPEG committee had provided a real way to specify this...) */
|
||||
/* Note application may override our guesses. */
|
||||
switch (cinfo->num_components) {
|
||||
case 1:
|
||||
cinfo->jpeg_color_space = JCS_GRAYSCALE;
|
||||
cinfo->out_color_space = JCS_GRAYSCALE;
|
||||
break;
|
||||
|
||||
case 3:
|
||||
if (cinfo->saw_JFIF_marker) {
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
|
||||
} else if (cinfo->saw_Adobe_marker) {
|
||||
switch (cinfo->Adobe_transform) {
|
||||
case 0:
|
||||
cinfo->jpeg_color_space = JCS_RGB;
|
||||
break;
|
||||
case 1:
|
||||
cinfo->jpeg_color_space = JCS_YCbCr;
|
||||
break;
|
||||
default:
|
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
/* Saw no special markers, try to guess from the component IDs */
|
||||
int cid0 = cinfo->comp_info[0].component_id;
|
||||
int cid1 = cinfo->comp_info[1].component_id;
|
||||
int cid2 = cinfo->comp_info[2].component_id;
|
||||
|
||||
if (cid0 == 1 && cid1 == 2 && cid2 == 3) {
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless)
|
||||
cinfo->jpeg_color_space = JCS_RGB; /* assume RGB w/out marker */
|
||||
else
|
||||
#endif
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
|
||||
} else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
|
||||
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
|
||||
else {
|
||||
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless)
|
||||
cinfo->jpeg_color_space = JCS_RGB; /* assume it's RGB */
|
||||
else
|
||||
#endif
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
|
||||
}
|
||||
}
|
||||
/* Always guess RGB is proper output colorspace. */
|
||||
cinfo->out_color_space = JCS_RGB;
|
||||
break;
|
||||
|
||||
case 4:
|
||||
if (cinfo->saw_Adobe_marker) {
|
||||
switch (cinfo->Adobe_transform) {
|
||||
case 0:
|
||||
cinfo->jpeg_color_space = JCS_CMYK;
|
||||
break;
|
||||
case 2:
|
||||
cinfo->jpeg_color_space = JCS_YCCK;
|
||||
break;
|
||||
default:
|
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
|
||||
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
/* No special markers, assume straight CMYK. */
|
||||
cinfo->jpeg_color_space = JCS_CMYK;
|
||||
}
|
||||
cinfo->out_color_space = JCS_CMYK;
|
||||
break;
|
||||
|
||||
default:
|
||||
cinfo->jpeg_color_space = JCS_UNKNOWN;
|
||||
cinfo->out_color_space = JCS_UNKNOWN;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Set defaults for other decompression parameters. */
|
||||
cinfo->scale_num = 1; /* 1:1 scaling */
|
||||
cinfo->scale_denom = 1;
|
||||
cinfo->output_gamma = 1.0;
|
||||
cinfo->buffered_image = FALSE;
|
||||
cinfo->raw_data_out = FALSE;
|
||||
cinfo->dct_method = JDCT_DEFAULT;
|
||||
cinfo->do_fancy_upsampling = TRUE;
|
||||
cinfo->do_block_smoothing = TRUE;
|
||||
cinfo->quantize_colors = FALSE;
|
||||
/* We set these in case application only sets quantize_colors. */
|
||||
cinfo->dither_mode = JDITHER_FS;
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
cinfo->two_pass_quantize = TRUE;
|
||||
#else
|
||||
cinfo->two_pass_quantize = FALSE;
|
||||
#endif
|
||||
cinfo->desired_number_of_colors = 256;
|
||||
cinfo->colormap = NULL;
|
||||
/* Initialize for no mode change in buffered-image mode. */
|
||||
cinfo->enable_1pass_quant = FALSE;
|
||||
cinfo->enable_external_quant = FALSE;
|
||||
cinfo->enable_2pass_quant = FALSE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decompression startup: read start of JPEG datastream to see what's there.
|
||||
* Need only initialize JPEG object and supply a data source before calling.
|
||||
*
|
||||
* This routine will read as far as the first SOS marker (ie, actual start of
|
||||
* compressed data), and will save all tables and parameters in the JPEG
|
||||
* object. It will also initialize the decompression parameters to default
|
||||
* values, and finally return JPEG_HEADER_OK. On return, the application may
|
||||
* adjust the decompression parameters and then call jpeg_start_decompress.
|
||||
* (Or, if the application only wanted to determine the image parameters,
|
||||
* the data need not be decompressed. In that case, call jpeg_abort or
|
||||
* jpeg_destroy to release any temporary space.)
|
||||
* If an abbreviated (tables only) datastream is presented, the routine will
|
||||
* return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
|
||||
* re-use the JPEG object to read the abbreviated image datastream(s).
|
||||
* It is unnecessary (but OK) to call jpeg_abort in this case.
|
||||
* The JPEG_SUSPENDED return code only occurs if the data source module
|
||||
* requests suspension of the decompressor. In this case the application
|
||||
* should load more source data and then re-call jpeg_read_header to resume
|
||||
* processing.
|
||||
* If a non-suspending data source is used and require_image is TRUE, then the
|
||||
* return code need not be inspected since only JPEG_HEADER_OK is possible.
|
||||
*
|
||||
* This routine is now just a front end to jpeg_consume_input, with some
|
||||
* extra error checking.
|
||||
*/
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_read_header(j_decompress_ptr cinfo, boolean require_image)
|
||||
{
|
||||
int retcode;
|
||||
|
||||
if (cinfo->global_state != DSTATE_START &&
|
||||
cinfo->global_state != DSTATE_INHEADER)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
retcode = jpeg_consume_input(cinfo);
|
||||
|
||||
switch (retcode) {
|
||||
case JPEG_REACHED_SOS:
|
||||
retcode = JPEG_HEADER_OK;
|
||||
break;
|
||||
case JPEG_REACHED_EOI:
|
||||
if (require_image) /* Complain if application wanted an image */
|
||||
ERREXIT(cinfo, JERR_NO_IMAGE);
|
||||
/* Reset to start state; it would be safer to require the application to
|
||||
* call jpeg_abort, but we can't change it now for compatibility reasons.
|
||||
* A side effect is to free any temporary memory (there shouldn't be any).
|
||||
*/
|
||||
jpeg_abort((j_common_ptr)cinfo); /* sets state = DSTATE_START */
|
||||
retcode = JPEG_HEADER_TABLES_ONLY;
|
||||
break;
|
||||
case JPEG_SUSPENDED:
|
||||
/* no work */
|
||||
break;
|
||||
}
|
||||
|
||||
return retcode;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Consume data in advance of what the decompressor requires.
|
||||
* This can be called at any time once the decompressor object has
|
||||
* been created and a data source has been set up.
|
||||
*
|
||||
* This routine is essentially a state machine that handles a couple
|
||||
* of critical state-transition actions, namely initial setup and
|
||||
* transition from header scanning to ready-for-start_decompress.
|
||||
* All the actual input is done via the input controller's consume_input
|
||||
* method.
|
||||
*/
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_consume_input(j_decompress_ptr cinfo)
|
||||
{
|
||||
int retcode = JPEG_SUSPENDED;
|
||||
|
||||
/* NB: every possible DSTATE value should be listed in this switch */
|
||||
switch (cinfo->global_state) {
|
||||
case DSTATE_START:
|
||||
/* Start-of-datastream actions: reset appropriate modules */
|
||||
(*cinfo->inputctl->reset_input_controller) (cinfo);
|
||||
/* Initialize application's data source module */
|
||||
(*cinfo->src->init_source) (cinfo);
|
||||
cinfo->global_state = DSTATE_INHEADER;
|
||||
FALLTHROUGH /*FALLTHROUGH*/
|
||||
case DSTATE_INHEADER:
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
|
||||
/* Set up default parameters based on header data */
|
||||
default_decompress_parms(cinfo);
|
||||
/* Set global state: ready for start_decompress */
|
||||
cinfo->global_state = DSTATE_READY;
|
||||
}
|
||||
break;
|
||||
case DSTATE_READY:
|
||||
/* Can't advance past first SOS until start_decompress is called */
|
||||
retcode = JPEG_REACHED_SOS;
|
||||
break;
|
||||
case DSTATE_PRELOAD:
|
||||
case DSTATE_PRESCAN:
|
||||
case DSTATE_SCANNING:
|
||||
case DSTATE_RAW_OK:
|
||||
case DSTATE_BUFIMAGE:
|
||||
case DSTATE_BUFPOST:
|
||||
case DSTATE_STOPPING:
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
break;
|
||||
default:
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
return retcode;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Have we finished reading the input file?
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_input_complete(j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Check for valid jpeg object */
|
||||
if (cinfo->global_state < DSTATE_START ||
|
||||
cinfo->global_state > DSTATE_STOPPING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return cinfo->inputctl->eoi_reached;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Is there more than one scan?
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_has_multiple_scans(j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Only valid after jpeg_read_header completes */
|
||||
if (cinfo->global_state < DSTATE_READY ||
|
||||
cinfo->global_state > DSTATE_STOPPING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return cinfo->inputctl->has_multiple_scans;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG decompression.
|
||||
*
|
||||
* This will normally just verify the file trailer and release temp storage.
|
||||
*
|
||||
* Returns FALSE if suspended. The return value need be inspected only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_finish_decompress(j_decompress_ptr cinfo)
|
||||
{
|
||||
if ((cinfo->global_state == DSTATE_SCANNING ||
|
||||
cinfo->global_state == DSTATE_RAW_OK) && !cinfo->buffered_image) {
|
||||
/* Terminate final pass of non-buffered mode */
|
||||
if (cinfo->output_scanline < cinfo->output_height)
|
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
|
||||
(*cinfo->master->finish_output_pass) (cinfo);
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
} else if (cinfo->global_state == DSTATE_BUFIMAGE) {
|
||||
/* Finishing after a buffered-image operation */
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
} else if (cinfo->global_state != DSTATE_STOPPING) {
|
||||
/* STOPPING = repeat call after a suspension, anything else is error */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
/* Read until EOI */
|
||||
while (!cinfo->inputctl->eoi_reached) {
|
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
||||
return FALSE; /* Suspend, come back later */
|
||||
}
|
||||
/* Do final cleanup */
|
||||
(*cinfo->src->term_source) (cinfo);
|
||||
/* We can use jpeg_abort to release memory and reset global_state */
|
||||
jpeg_abort((j_common_ptr)cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
764
thirdparty/libjpeg-turbo/src/jdapistd.c
vendored
Normal file
764
thirdparty/libjpeg-turbo/src/jdapistd.c
vendored
Normal file
@@ -0,0 +1,764 @@
|
||||
/*
|
||||
* jdapistd.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2010, 2015-2020, 2022-2024, D. R. Commander.
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains application interface code for the decompression half
|
||||
* of the JPEG library. These are the "standard" API routines that are
|
||||
* used in the normal full-decompression case. They are not used by a
|
||||
* transcoding-only application. Note that if an application links in
|
||||
* jpeg_start_decompress, it will end up linking in the entire decompressor.
|
||||
* We thus must separate this file from jdapimin.c to avoid linking the
|
||||
* whole decompression library into a transcoder.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
#if BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED)
|
||||
#include "jdmainct.h"
|
||||
#include "jdcoefct.h"
|
||||
#else
|
||||
#define JPEG_INTERNALS
|
||||
#include "jpeglib.h"
|
||||
#endif
|
||||
#include "jdmaster.h"
|
||||
#include "jdmerge.h"
|
||||
#include "jdsample.h"
|
||||
#include "jmemsys.h"
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
|
||||
/* Forward declarations */
|
||||
LOCAL(boolean) output_pass_setup(j_decompress_ptr cinfo);
|
||||
|
||||
|
||||
/*
|
||||
* Decompression initialization.
|
||||
* jpeg_read_header must be completed before calling this.
|
||||
*
|
||||
* If a multipass operating mode was selected, this will do all but the
|
||||
* last pass, and thus may take a great deal of time.
|
||||
*
|
||||
* Returns FALSE if suspended. The return value need be inspected only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_start_decompress(j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state == DSTATE_READY) {
|
||||
/* First call: initialize master control, select active modules */
|
||||
jinit_master_decompress(cinfo);
|
||||
if (cinfo->buffered_image) {
|
||||
/* No more work here; expecting jpeg_start_output next */
|
||||
cinfo->global_state = DSTATE_BUFIMAGE;
|
||||
return TRUE;
|
||||
}
|
||||
cinfo->global_state = DSTATE_PRELOAD;
|
||||
}
|
||||
if (cinfo->global_state == DSTATE_PRELOAD) {
|
||||
/* If file has multiple scans, absorb them all into the coef buffer */
|
||||
if (cinfo->inputctl->has_multiple_scans) {
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
for (;;) {
|
||||
int retcode;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL)
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo);
|
||||
/* Absorb some more input */
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
if (retcode == JPEG_SUSPENDED)
|
||||
return FALSE;
|
||||
if (retcode == JPEG_REACHED_EOI)
|
||||
break;
|
||||
/* Advance progress counter if appropriate */
|
||||
if (cinfo->progress != NULL &&
|
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
|
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
|
||||
/* jdmaster underestimated number of scans; ratchet up one scan */
|
||||
cinfo->progress->pass_limit += (long)cinfo->total_iMCU_rows;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
}
|
||||
cinfo->output_scan_number = cinfo->input_scan_number;
|
||||
} else if (cinfo->global_state != DSTATE_PRESCAN)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Perform any dummy output passes, and set up for the final pass */
|
||||
return output_pass_setup(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set up for an output pass, and perform any dummy pass(es) needed.
|
||||
* Common subroutine for jpeg_start_decompress and jpeg_start_output.
|
||||
* Entry: global_state = DSTATE_PRESCAN only if previously suspended.
|
||||
* Exit: If done, returns TRUE and sets global_state for proper output mode.
|
||||
* If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
output_pass_setup(j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state != DSTATE_PRESCAN) {
|
||||
/* First call: do pass setup */
|
||||
(*cinfo->master->prepare_for_output_pass) (cinfo);
|
||||
cinfo->output_scanline = 0;
|
||||
cinfo->global_state = DSTATE_PRESCAN;
|
||||
}
|
||||
/* Loop over any required dummy passes */
|
||||
while (cinfo->master->is_dummy_pass) {
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
/* Crank through the dummy pass */
|
||||
while (cinfo->output_scanline < cinfo->output_height) {
|
||||
JDIMENSION last_scanline;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long)cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long)cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo);
|
||||
}
|
||||
/* Process some data */
|
||||
last_scanline = cinfo->output_scanline;
|
||||
if (cinfo->data_precision <= 8)
|
||||
(*cinfo->main->process_data) (cinfo, (JSAMPARRAY)NULL,
|
||||
&cinfo->output_scanline, (JDIMENSION)0);
|
||||
else if (cinfo->data_precision <= 12)
|
||||
(*cinfo->main->process_data_12) (cinfo, (J12SAMPARRAY)NULL,
|
||||
&cinfo->output_scanline,
|
||||
(JDIMENSION)0);
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
else
|
||||
(*cinfo->main->process_data_16) (cinfo, (J16SAMPARRAY)NULL,
|
||||
&cinfo->output_scanline,
|
||||
(JDIMENSION)0);
|
||||
#endif
|
||||
if (cinfo->output_scanline == last_scanline)
|
||||
return FALSE; /* No progress made, must suspend */
|
||||
}
|
||||
/* Finish up dummy pass, and set up for another one */
|
||||
(*cinfo->master->finish_output_pass) (cinfo);
|
||||
(*cinfo->master->prepare_for_output_pass) (cinfo);
|
||||
cinfo->output_scanline = 0;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
}
|
||||
/* Ready for application to drive output pass through
|
||||
* _jpeg_read_scanlines or _jpeg_read_raw_data.
|
||||
*/
|
||||
cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 8 */
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
|
||||
/*
|
||||
* Enable partial scanline decompression
|
||||
*
|
||||
* Must be called after jpeg_start_decompress() and before any calls to
|
||||
* _jpeg_read_scanlines() or _jpeg_skip_scanlines().
|
||||
*
|
||||
* Refer to libjpeg.txt for more information.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jpeg_crop_scanline(j_decompress_ptr cinfo, JDIMENSION *xoffset,
|
||||
JDIMENSION *width)
|
||||
{
|
||||
int ci, align, orig_downsampled_width;
|
||||
JDIMENSION input_xoffset;
|
||||
boolean reinit_upsampler = FALSE;
|
||||
jpeg_component_info *compptr;
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
#endif
|
||||
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
if (cinfo->master->lossless)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
|
||||
if ((cinfo->global_state != DSTATE_SCANNING &&
|
||||
cinfo->global_state != DSTATE_BUFIMAGE) || cinfo->output_scanline != 0)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (!xoffset || !width)
|
||||
ERREXIT(cinfo, JERR_BAD_CROP_SPEC);
|
||||
|
||||
/* xoffset and width must fall within the output image dimensions. */
|
||||
if (*width == 0 ||
|
||||
(unsigned long long)(*xoffset) + *width > cinfo->output_width)
|
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
||||
|
||||
/* No need to do anything if the caller wants the entire width. */
|
||||
if (*width == cinfo->output_width)
|
||||
return;
|
||||
|
||||
/* Ensuring the proper alignment of xoffset is tricky. At minimum, it
|
||||
* must align with an MCU boundary, because:
|
||||
*
|
||||
* (1) The IDCT is performed in blocks, and it is not feasible to modify
|
||||
* the algorithm so that it can transform partial blocks.
|
||||
* (2) Because of the SIMD extensions, any input buffer passed to the
|
||||
* upsampling and color conversion routines must be aligned to the
|
||||
* SIMD word size (for instance, 128-bit in the case of SSE2.) The
|
||||
* easiest way to accomplish this without copying data is to ensure
|
||||
* that upsampling and color conversion begin at the start of the
|
||||
* first MCU column that will be inverse transformed.
|
||||
*
|
||||
* In practice, we actually impose a stricter alignment requirement. We
|
||||
* require that xoffset be a multiple of the maximum MCU column width of all
|
||||
* of the components (the "iMCU column width.") This is to simplify the
|
||||
* single-pass decompression case, allowing us to use the same MCU column
|
||||
* width for all of the components.
|
||||
*/
|
||||
if (cinfo->comps_in_scan == 1 && cinfo->num_components == 1)
|
||||
align = cinfo->_min_DCT_scaled_size;
|
||||
else
|
||||
align = cinfo->_min_DCT_scaled_size * cinfo->max_h_samp_factor;
|
||||
|
||||
/* Adjust xoffset to the nearest iMCU boundary <= the requested value */
|
||||
input_xoffset = *xoffset;
|
||||
*xoffset = (input_xoffset / align) * align;
|
||||
|
||||
/* Adjust the width so that the right edge of the output image is as
|
||||
* requested (only the left edge is altered.) It is important that calling
|
||||
* programs check this value after this function returns, so that they can
|
||||
* allocate an output buffer with the appropriate size.
|
||||
*/
|
||||
*width = *width + input_xoffset - *xoffset;
|
||||
cinfo->output_width = *width;
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
if (master->using_merged_upsample && cinfo->max_v_samp_factor == 2) {
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
upsample->out_row_width =
|
||||
cinfo->output_width * cinfo->out_color_components;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Set the first and last iMCU columns that we must decompress. These values
|
||||
* will be used in single-scan decompressions.
|
||||
*/
|
||||
cinfo->master->first_iMCU_col = (JDIMENSION)(long)(*xoffset) / (long)align;
|
||||
cinfo->master->last_iMCU_col =
|
||||
(JDIMENSION)jdiv_round_up((long)(*xoffset + cinfo->output_width),
|
||||
(long)align) - 1;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
int hsf = (cinfo->comps_in_scan == 1 && cinfo->num_components == 1) ?
|
||||
1 : compptr->h_samp_factor;
|
||||
|
||||
/* Set downsampled_width to the new output width. */
|
||||
orig_downsampled_width = compptr->downsampled_width;
|
||||
compptr->downsampled_width =
|
||||
(JDIMENSION)jdiv_round_up((long)cinfo->output_width *
|
||||
(long)(compptr->h_samp_factor *
|
||||
compptr->_DCT_scaled_size),
|
||||
(long)(cinfo->max_h_samp_factor *
|
||||
cinfo->_min_DCT_scaled_size));
|
||||
if (compptr->downsampled_width < 2 && orig_downsampled_width >= 2)
|
||||
reinit_upsampler = TRUE;
|
||||
|
||||
/* Set the first and last iMCU columns that we must decompress. These
|
||||
* values will be used in multi-scan decompressions.
|
||||
*/
|
||||
cinfo->master->first_MCU_col[ci] =
|
||||
(JDIMENSION)(long)(*xoffset * hsf) / (long)align;
|
||||
cinfo->master->last_MCU_col[ci] =
|
||||
(JDIMENSION)jdiv_round_up((long)((*xoffset + cinfo->output_width) * hsf),
|
||||
(long)align) - 1;
|
||||
}
|
||||
|
||||
if (reinit_upsampler) {
|
||||
cinfo->master->jinit_upsampler_no_alloc = TRUE;
|
||||
_jinit_upsampler(cinfo);
|
||||
cinfo->master->jinit_upsampler_no_alloc = FALSE;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 */
|
||||
|
||||
|
||||
/*
|
||||
* Read some scanlines of data from the JPEG decompressor.
|
||||
*
|
||||
* The return value will be the number of lines actually read.
|
||||
* This may be less than the number requested in several cases,
|
||||
* including bottom of image, data source suspension, and operating
|
||||
* modes that emit multiple scanlines at a time.
|
||||
*
|
||||
* Note: we warn about excess calls to _jpeg_read_scanlines() since
|
||||
* this likely signals an application programmer error. However,
|
||||
* an oversize buffer (max_lines > scanlines remaining) is not an error.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
_jpeg_read_scanlines(j_decompress_ptr cinfo, _JSAMPARRAY scanlines,
|
||||
JDIMENSION max_lines)
|
||||
{
|
||||
#if BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED)
|
||||
JDIMENSION row_ctr;
|
||||
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE || cinfo->data_precision < 2)
|
||||
#else
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE ||
|
||||
cinfo->data_precision < BITS_IN_JSAMPLE - 3)
|
||||
#endif
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
}
|
||||
|
||||
if (cinfo->global_state != DSTATE_SCANNING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->output_scanline >= cinfo->output_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long)cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long)cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo);
|
||||
}
|
||||
|
||||
/* Process some data */
|
||||
row_ctr = 0;
|
||||
(*cinfo->main->_process_data) (cinfo, scanlines, &row_ctr, max_lines);
|
||||
cinfo->output_scanline += row_ctr;
|
||||
return row_ctr;
|
||||
#else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
|
||||
/* Dummy color convert function used by _jpeg_skip_scanlines() */
|
||||
LOCAL(void)
|
||||
noop_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
/* Dummy quantize function used by _jpeg_skip_scanlines() */
|
||||
LOCAL(void)
|
||||
noop_quantize(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* In some cases, it is best to call _jpeg_read_scanlines() and discard the
|
||||
* output, rather than skipping the scanlines, because this allows us to
|
||||
* maintain the internal state of the context-based upsampler. In these cases,
|
||||
* we set up and tear down a dummy color converter in order to avoid valgrind
|
||||
* errors and to achieve the best possible performance.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
read_and_discard_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines)
|
||||
{
|
||||
JDIMENSION n;
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
#endif
|
||||
_JSAMPLE dummy_sample[1] = { 0 };
|
||||
_JSAMPROW dummy_row = dummy_sample;
|
||||
_JSAMPARRAY scanlines = NULL;
|
||||
void (*color_convert) (j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf,
|
||||
int num_rows) = NULL;
|
||||
void (*color_quantize) (j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPARRAY output_buf, int num_rows) = NULL;
|
||||
|
||||
if (cinfo->cconvert && cinfo->cconvert->_color_convert) {
|
||||
color_convert = cinfo->cconvert->_color_convert;
|
||||
cinfo->cconvert->_color_convert = noop_convert;
|
||||
/* This just prevents UBSan from complaining about adding 0 to a NULL
|
||||
* pointer. The pointer isn't actually used.
|
||||
*/
|
||||
scanlines = &dummy_row;
|
||||
}
|
||||
|
||||
if (cinfo->cquantize && cinfo->cquantize->_color_quantize) {
|
||||
color_quantize = cinfo->cquantize->_color_quantize;
|
||||
cinfo->cquantize->_color_quantize = noop_quantize;
|
||||
}
|
||||
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
if (master->using_merged_upsample && cinfo->max_v_samp_factor == 2) {
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
scanlines = &upsample->spare_row;
|
||||
}
|
||||
#endif
|
||||
|
||||
for (n = 0; n < num_lines; n++)
|
||||
_jpeg_read_scanlines(cinfo, scanlines, 1);
|
||||
|
||||
if (color_convert)
|
||||
cinfo->cconvert->_color_convert = color_convert;
|
||||
|
||||
if (color_quantize)
|
||||
cinfo->cquantize->_color_quantize = color_quantize;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Called by _jpeg_skip_scanlines(). This partially skips a decompress block
|
||||
* by incrementing the rowgroup counter.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
increment_simple_rowgroup_ctr(j_decompress_ptr cinfo, JDIMENSION rows)
|
||||
{
|
||||
JDIMENSION rows_left;
|
||||
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
|
||||
if (master->using_merged_upsample && cinfo->max_v_samp_factor == 2) {
|
||||
read_and_discard_scanlines(cinfo, rows);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Increment the counter to the next row group after the skipped rows. */
|
||||
main_ptr->rowgroup_ctr += rows / cinfo->max_v_samp_factor;
|
||||
|
||||
/* Partially skipping a row group would involve modifying the internal state
|
||||
* of the upsampler, so read the remaining rows into a dummy buffer instead.
|
||||
*/
|
||||
rows_left = rows % cinfo->max_v_samp_factor;
|
||||
cinfo->output_scanline += rows - rows_left;
|
||||
|
||||
read_and_discard_scanlines(cinfo, rows_left);
|
||||
}
|
||||
|
||||
/*
|
||||
* Skips some scanlines of data from the JPEG decompressor.
|
||||
*
|
||||
* The return value will be the number of lines actually skipped. If skipping
|
||||
* num_lines would move beyond the end of the image, then the actual number of
|
||||
* lines remaining in the image is returned. Otherwise, the return value will
|
||||
* be equal to num_lines.
|
||||
*
|
||||
* Refer to libjpeg.txt for more information.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
_jpeg_skip_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines)
|
||||
{
|
||||
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
JDIMENSION i, x;
|
||||
int y;
|
||||
JDIMENSION lines_per_iMCU_row, lines_left_in_iMCU_row, lines_after_iMCU_row;
|
||||
JDIMENSION lines_to_skip, lines_to_read;
|
||||
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
if (cinfo->master->lossless)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
|
||||
/* Two-pass color quantization is not supported. */
|
||||
if (cinfo->quantize_colors && cinfo->two_pass_quantize)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
|
||||
if (cinfo->global_state != DSTATE_SCANNING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* Do not skip past the bottom of the image. */
|
||||
if ((unsigned long long)cinfo->output_scanline + num_lines >=
|
||||
cinfo->output_height) {
|
||||
num_lines = cinfo->output_height - cinfo->output_scanline;
|
||||
cinfo->output_scanline = cinfo->output_height;
|
||||
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
||||
cinfo->inputctl->eoi_reached = TRUE;
|
||||
return num_lines;
|
||||
}
|
||||
|
||||
if (num_lines == 0)
|
||||
return 0;
|
||||
|
||||
lines_per_iMCU_row = cinfo->_min_DCT_scaled_size * cinfo->max_v_samp_factor;
|
||||
lines_left_in_iMCU_row =
|
||||
(lines_per_iMCU_row - (cinfo->output_scanline % lines_per_iMCU_row)) %
|
||||
lines_per_iMCU_row;
|
||||
lines_after_iMCU_row = num_lines - lines_left_in_iMCU_row;
|
||||
|
||||
/* Skip the lines remaining in the current iMCU row. When upsampling
|
||||
* requires context rows, we need the previous and next rows in order to read
|
||||
* the current row. This adds some complexity.
|
||||
*/
|
||||
if (cinfo->upsample->need_context_rows) {
|
||||
/* If the skipped lines would not move us past the current iMCU row, we
|
||||
* read the lines and ignore them. There might be a faster way of doing
|
||||
* this, but we are facing increasing complexity for diminishing returns.
|
||||
* The increasing complexity would be a by-product of meddling with the
|
||||
* state machine used to skip context rows. Near the end of an iMCU row,
|
||||
* the next iMCU row may have already been entropy-decoded. In this unique
|
||||
* case, we will read the next iMCU row if we cannot skip past it as well.
|
||||
*/
|
||||
if ((num_lines < lines_left_in_iMCU_row + 1) ||
|
||||
(lines_left_in_iMCU_row <= 1 && main_ptr->buffer_full &&
|
||||
lines_after_iMCU_row < lines_per_iMCU_row + 1)) {
|
||||
read_and_discard_scanlines(cinfo, num_lines);
|
||||
return num_lines;
|
||||
}
|
||||
|
||||
/* If the next iMCU row has already been entropy-decoded, make sure that
|
||||
* we do not skip too far.
|
||||
*/
|
||||
if (lines_left_in_iMCU_row <= 1 && main_ptr->buffer_full) {
|
||||
cinfo->output_scanline += lines_left_in_iMCU_row + lines_per_iMCU_row;
|
||||
lines_after_iMCU_row -= lines_per_iMCU_row;
|
||||
} else {
|
||||
cinfo->output_scanline += lines_left_in_iMCU_row;
|
||||
}
|
||||
|
||||
/* If we have just completed the first block, adjust the buffer pointers */
|
||||
if (main_ptr->iMCU_row_ctr == 0 ||
|
||||
(main_ptr->iMCU_row_ctr == 1 && lines_left_in_iMCU_row > 2))
|
||||
set_wraparound_pointers(cinfo);
|
||||
main_ptr->buffer_full = FALSE;
|
||||
main_ptr->rowgroup_ctr = 0;
|
||||
main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
|
||||
if (!master->using_merged_upsample) {
|
||||
upsample->next_row_out = cinfo->max_v_samp_factor;
|
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
|
||||
}
|
||||
}
|
||||
|
||||
/* Skipping is much simpler when context rows are not required. */
|
||||
else {
|
||||
if (num_lines < lines_left_in_iMCU_row) {
|
||||
increment_simple_rowgroup_ctr(cinfo, num_lines);
|
||||
return num_lines;
|
||||
} else {
|
||||
cinfo->output_scanline += lines_left_in_iMCU_row;
|
||||
main_ptr->buffer_full = FALSE;
|
||||
main_ptr->rowgroup_ctr = 0;
|
||||
if (!master->using_merged_upsample) {
|
||||
upsample->next_row_out = cinfo->max_v_samp_factor;
|
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Calculate how many full iMCU rows we can skip. */
|
||||
if (cinfo->upsample->need_context_rows)
|
||||
lines_to_skip = ((lines_after_iMCU_row - 1) / lines_per_iMCU_row) *
|
||||
lines_per_iMCU_row;
|
||||
else
|
||||
lines_to_skip = (lines_after_iMCU_row / lines_per_iMCU_row) *
|
||||
lines_per_iMCU_row;
|
||||
/* Calculate the number of lines that remain to be skipped after skipping all
|
||||
* of the full iMCU rows that we can. We will not read these lines unless we
|
||||
* have to.
|
||||
*/
|
||||
lines_to_read = lines_after_iMCU_row - lines_to_skip;
|
||||
|
||||
/* For images requiring multiple scans (progressive, non-interleaved, etc.),
|
||||
* all of the entropy decoding occurs in jpeg_start_decompress(), assuming
|
||||
* that the input data source is non-suspending. This makes skipping easy.
|
||||
*/
|
||||
if (cinfo->inputctl->has_multiple_scans || cinfo->buffered_image) {
|
||||
if (cinfo->upsample->need_context_rows) {
|
||||
cinfo->output_scanline += lines_to_skip;
|
||||
cinfo->output_iMCU_row += lines_to_skip / lines_per_iMCU_row;
|
||||
main_ptr->iMCU_row_ctr += lines_to_skip / lines_per_iMCU_row;
|
||||
/* It is complex to properly move to the middle of a context block, so
|
||||
* read the remaining lines instead of skipping them.
|
||||
*/
|
||||
read_and_discard_scanlines(cinfo, lines_to_read);
|
||||
} else {
|
||||
cinfo->output_scanline += lines_to_skip;
|
||||
cinfo->output_iMCU_row += lines_to_skip / lines_per_iMCU_row;
|
||||
increment_simple_rowgroup_ctr(cinfo, lines_to_read);
|
||||
}
|
||||
if (!master->using_merged_upsample)
|
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
|
||||
return num_lines;
|
||||
}
|
||||
|
||||
/* Skip the iMCU rows that we can safely skip. */
|
||||
for (i = 0; i < lines_to_skip; i += lines_per_iMCU_row) {
|
||||
for (y = 0; y < coef->MCU_rows_per_iMCU_row; y++) {
|
||||
for (x = 0; x < cinfo->MCUs_per_row; x++) {
|
||||
/* Calling decode_mcu() with a NULL pointer causes it to discard the
|
||||
* decoded coefficients. This is ~5% faster for large subsets, but
|
||||
* it's tough to tell a difference for smaller images.
|
||||
*/
|
||||
if (!cinfo->entropy->insufficient_data)
|
||||
cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row;
|
||||
(*cinfo->entropy->decode_mcu) (cinfo, NULL);
|
||||
}
|
||||
}
|
||||
cinfo->input_iMCU_row++;
|
||||
cinfo->output_iMCU_row++;
|
||||
if (cinfo->input_iMCU_row < cinfo->total_iMCU_rows)
|
||||
start_iMCU_row(cinfo);
|
||||
else
|
||||
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
||||
}
|
||||
cinfo->output_scanline += lines_to_skip;
|
||||
|
||||
if (cinfo->upsample->need_context_rows) {
|
||||
/* Context-based upsampling keeps track of iMCU rows. */
|
||||
main_ptr->iMCU_row_ctr += lines_to_skip / lines_per_iMCU_row;
|
||||
|
||||
/* It is complex to properly move to the middle of a context block, so
|
||||
* read the remaining lines instead of skipping them.
|
||||
*/
|
||||
read_and_discard_scanlines(cinfo, lines_to_read);
|
||||
} else {
|
||||
increment_simple_rowgroup_ctr(cinfo, lines_to_read);
|
||||
}
|
||||
|
||||
/* Since skipping lines involves skipping the upsampling step, the value of
|
||||
* "rows_to_go" will become invalid unless we set it here. NOTE: This is a
|
||||
* bit odd, since "rows_to_go" seems to be redundantly keeping track of
|
||||
* output_scanline.
|
||||
*/
|
||||
if (!master->using_merged_upsample)
|
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
|
||||
|
||||
/* Always skip the requested number of lines. */
|
||||
return num_lines;
|
||||
}
|
||||
|
||||
/*
|
||||
* Alternate entry point to read raw data.
|
||||
* Processes exactly one iMCU row per call, unless suspended.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
_jpeg_read_raw_data(j_decompress_ptr cinfo, _JSAMPIMAGE data,
|
||||
JDIMENSION max_lines)
|
||||
{
|
||||
JDIMENSION lines_per_iMCU_row;
|
||||
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
if (cinfo->master->lossless)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
|
||||
if (cinfo->global_state != DSTATE_RAW_OK)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->output_scanline >= cinfo->output_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long)cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long)cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo);
|
||||
}
|
||||
|
||||
/* Verify that at least one iMCU row can be returned. */
|
||||
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->_min_DCT_scaled_size;
|
||||
if (max_lines < lines_per_iMCU_row)
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
|
||||
/* Decompress directly into user's buffer. */
|
||||
if (!(*cinfo->coef->_decompress_data) (cinfo, data))
|
||||
return 0; /* suspension forced, can do nothing more */
|
||||
|
||||
/* OK, we processed one iMCU row. */
|
||||
cinfo->output_scanline += lines_per_iMCU_row;
|
||||
return lines_per_iMCU_row;
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 */
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
|
||||
/* Additional entry points for buffered-image mode. */
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
/*
|
||||
* Initialize for an output pass in buffered-image mode.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_start_output(j_decompress_ptr cinfo, int scan_number)
|
||||
{
|
||||
if (cinfo->global_state != DSTATE_BUFIMAGE &&
|
||||
cinfo->global_state != DSTATE_PRESCAN)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Limit scan number to valid range */
|
||||
if (scan_number <= 0)
|
||||
scan_number = 1;
|
||||
if (cinfo->inputctl->eoi_reached && scan_number > cinfo->input_scan_number)
|
||||
scan_number = cinfo->input_scan_number;
|
||||
cinfo->output_scan_number = scan_number;
|
||||
/* Perform any dummy output passes, and set up for the real pass */
|
||||
return output_pass_setup(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up after an output pass in buffered-image mode.
|
||||
*
|
||||
* Returns FALSE if suspended. The return value need be inspected only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_finish_output(j_decompress_ptr cinfo)
|
||||
{
|
||||
if ((cinfo->global_state == DSTATE_SCANNING ||
|
||||
cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
|
||||
/* Terminate this pass. */
|
||||
/* We do not require the whole pass to have been completed. */
|
||||
(*cinfo->master->finish_output_pass) (cinfo);
|
||||
cinfo->global_state = DSTATE_BUFPOST;
|
||||
} else if (cinfo->global_state != DSTATE_BUFPOST) {
|
||||
/* BUFPOST = repeat call after a suspension, anything else is error */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
/* Read markers looking for SOS or EOI */
|
||||
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
|
||||
!cinfo->inputctl->eoi_reached) {
|
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
||||
return FALSE; /* Suspend, come back later */
|
||||
}
|
||||
cinfo->global_state = DSTATE_BUFIMAGE;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 8 */
|
||||
782
thirdparty/libjpeg-turbo/src/jdarith.c
vendored
Normal file
782
thirdparty/libjpeg-turbo/src/jdarith.c
vendored
Normal file
@@ -0,0 +1,782 @@
|
||||
/*
|
||||
* jdarith.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Developed 1997-2015 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2015-2020, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains portable arithmetic entropy encoding routines for JPEG
|
||||
* (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1).
|
||||
*
|
||||
* Both sequential and progressive modes are supported in this single module.
|
||||
*
|
||||
* Suspension is not currently supported in this module.
|
||||
*
|
||||
* NOTE: All referenced figures are from
|
||||
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
#define NEG_1 ((unsigned int)-1)
|
||||
|
||||
|
||||
/* Expanded entropy decoder object for arithmetic decoding. */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_decoder pub; /* public fields */
|
||||
|
||||
JLONG c; /* C register, base of coding interval + input bit buffer */
|
||||
JLONG a; /* A register, normalized size of coding interval */
|
||||
int ct; /* bit shift counter, # of bits left in bit buffer part of C */
|
||||
/* init: ct = -16 */
|
||||
/* run: ct = 0..7 */
|
||||
/* error: ct = -1 */
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
|
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
|
||||
/* Pointers to statistics areas (these workspaces have image lifespan) */
|
||||
unsigned char *dc_stats[NUM_ARITH_TBLS];
|
||||
unsigned char *ac_stats[NUM_ARITH_TBLS];
|
||||
|
||||
/* Statistics bin for coding with fixed probability 0.5 */
|
||||
unsigned char fixed_bin[4];
|
||||
} arith_entropy_decoder;
|
||||
|
||||
typedef arith_entropy_decoder *arith_entropy_ptr;
|
||||
|
||||
/* The following two definitions specify the allocation chunk size
|
||||
* for the statistics area.
|
||||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
|
||||
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
|
||||
*
|
||||
* We use a compact representation with 1 byte per statistics bin,
|
||||
* thus the numbers directly represent byte sizes.
|
||||
* This 1 byte per statistics bin contains the meaning of the MPS
|
||||
* (more probable symbol) in the highest bit (mask 0x80), and the
|
||||
* index into the probability estimation state machine table
|
||||
* in the lower bits (mask 0x7F).
|
||||
*/
|
||||
|
||||
#define DC_STAT_BINS 64
|
||||
#define AC_STAT_BINS 256
|
||||
|
||||
|
||||
LOCAL(int)
|
||||
get_byte(j_decompress_ptr cinfo)
|
||||
/* Read next input byte; we do not support suspension in this module. */
|
||||
{
|
||||
struct jpeg_source_mgr *src = cinfo->src;
|
||||
|
||||
if (src->bytes_in_buffer == 0)
|
||||
if (!(*src->fill_input_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
src->bytes_in_buffer--;
|
||||
return *src->next_input_byte++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The core arithmetic decoding routine (common in JPEG and JBIG).
|
||||
* This needs to go as fast as possible.
|
||||
* Machine-dependent optimization facilities
|
||||
* are not utilized in this portable implementation.
|
||||
* However, this code should be fairly efficient and
|
||||
* may be a good base for further optimizations anyway.
|
||||
*
|
||||
* Return value is 0 or 1 (binary decision).
|
||||
*
|
||||
* Note: I've changed the handling of the code base & bit
|
||||
* buffer register C compared to other implementations
|
||||
* based on the standards layout & procedures.
|
||||
* While it also contains both the actual base of the
|
||||
* coding interval (16 bits) and the next-bits buffer,
|
||||
* the cut-point between these two parts is floating
|
||||
* (instead of fixed) with the bit shift counter CT.
|
||||
* Thus, we also need only one (variable instead of
|
||||
* fixed size) shift for the LPS/MPS decision, and
|
||||
* we can do away with any renormalization update
|
||||
* of C (except for new data insertion, of course).
|
||||
*
|
||||
* I've also introduced a new scheme for accessing
|
||||
* the probability estimation state machine table,
|
||||
* derived from Markus Kuhn's JBIG implementation.
|
||||
*/
|
||||
|
||||
LOCAL(int)
|
||||
arith_decode(j_decompress_ptr cinfo, unsigned char *st)
|
||||
{
|
||||
register arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy;
|
||||
register unsigned char nl, nm;
|
||||
register JLONG qe, temp;
|
||||
register int sv, data;
|
||||
|
||||
/* Renormalization & data input per section D.2.6 */
|
||||
while (e->a < 0x8000L) {
|
||||
if (--e->ct < 0) {
|
||||
/* Need to fetch next data byte */
|
||||
if (cinfo->unread_marker)
|
||||
data = 0; /* stuff zero data */
|
||||
else {
|
||||
data = get_byte(cinfo); /* read next input byte */
|
||||
if (data == 0xFF) { /* zero stuff or marker code */
|
||||
do data = get_byte(cinfo);
|
||||
while (data == 0xFF); /* swallow extra 0xFF bytes */
|
||||
if (data == 0)
|
||||
data = 0xFF; /* discard stuffed zero byte */
|
||||
else {
|
||||
/* Note: Different from the Huffman decoder, hitting
|
||||
* a marker while processing the compressed data
|
||||
* segment is legal in arithmetic coding.
|
||||
* The convention is to supply zero data
|
||||
* then until decoding is complete.
|
||||
*/
|
||||
cinfo->unread_marker = data;
|
||||
data = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
e->c = (e->c << 8) | data; /* insert data into C register */
|
||||
if ((e->ct += 8) < 0) /* update bit shift counter */
|
||||
/* Need more initial bytes */
|
||||
if (++e->ct == 0)
|
||||
/* Got 2 initial bytes -> re-init A and exit loop */
|
||||
e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
|
||||
}
|
||||
e->a <<= 1;
|
||||
}
|
||||
|
||||
/* Fetch values from our compact representation of Table D.2:
|
||||
* Qe values and probability estimation state machine
|
||||
*/
|
||||
sv = *st;
|
||||
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
|
||||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
|
||||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
|
||||
|
||||
/* Decode & estimation procedures per sections D.2.4 & D.2.5 */
|
||||
temp = e->a - qe;
|
||||
e->a = temp;
|
||||
temp <<= e->ct;
|
||||
if (e->c >= temp) {
|
||||
e->c -= temp;
|
||||
/* Conditional LPS (less probable symbol) exchange */
|
||||
if (e->a < qe) {
|
||||
e->a = qe;
|
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||
} else {
|
||||
e->a = qe;
|
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||
sv ^= 0x80; /* Exchange LPS/MPS */
|
||||
}
|
||||
} else if (e->a < 0x8000L) {
|
||||
/* Conditional MPS (more probable symbol) exchange */
|
||||
if (e->a < qe) {
|
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||
sv ^= 0x80; /* Exchange LPS/MPS */
|
||||
} else {
|
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||
}
|
||||
}
|
||||
|
||||
return sv >> 7;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Check for a restart marker & resynchronize decoder.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
process_restart(j_decompress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Advance past the RSTn marker */
|
||||
if (!(*cinfo->marker->read_restart_marker) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
|
||||
/* Re-initialize statistics areas */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
memset(entropy->dc_stats[compptr->dc_tbl_no], 0, DC_STAT_BINS);
|
||||
/* Reset DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (!cinfo->progressive_mode || cinfo->Ss) {
|
||||
memset(entropy->ac_stats[compptr->ac_tbl_no], 0, AC_STAT_BINS);
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset arithmetic decoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0;
|
||||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
|
||||
|
||||
/* Reset restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Arithmetic MCU decoding.
|
||||
* Each of these routines decodes and returns one MCU's worth of
|
||||
* arithmetic-compressed coefficients.
|
||||
* The coefficients are reordered from zigzag order into natural array order,
|
||||
* but are not dequantized.
|
||||
*
|
||||
* The i'th block of the MCU is stored into the block pointed to by
|
||||
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
|
||||
*/
|
||||
|
||||
/*
|
||||
* MCU decoding for DC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_DC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl, sign;
|
||||
int v, m;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
|
||||
|
||||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.19: Decode_DC_DIFF */
|
||||
if (arith_decode(cinfo, st) == 0)
|
||||
entropy->dc_context[ci] = 0;
|
||||
else {
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
sign = arith_decode(cinfo, st + 1);
|
||||
st += 2; st += sign;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
|
||||
else
|
||||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
entropy->last_dc_val[ci] = (entropy->last_dc_val[ci] + v) & 0xffff;
|
||||
}
|
||||
|
||||
/* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
|
||||
(*block)[0] = (JCOEF)LEFT_SHIFT(entropy->last_dc_val[ci], cinfo->Al);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_AC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int tbl, sign, k;
|
||||
int v, m;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* There is always only one block per MCU */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
|
||||
|
||||
/* Figure F.20: Decode_AC_coefficients */
|
||||
for (k = cinfo->Ss; k <= cinfo->Se; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||
while (arith_decode(cinfo, st + 1) == 0) {
|
||||
st += 3; k++;
|
||||
if (k > cinfo->Se) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* spectral overflow */
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
sign = arith_decode(cinfo, entropy->fixed_bin);
|
||||
st += 2;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
if (arith_decode(cinfo, st)) {
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
/* Scale and output coefficient in natural (dezigzagged) order */
|
||||
(*block)[jpeg_natural_order[k]] = (JCOEF)((unsigned)v << cinfo->Al);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for DC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_DC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
unsigned char *st;
|
||||
int p1, blkn;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
st = entropy->fixed_bin; /* use fixed probability estimation */
|
||||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
/* Encoded data is simply the next bit of the two's-complement DC value */
|
||||
if (arith_decode(cinfo, st))
|
||||
MCU_data[blkn][0][0] |= p1;
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_AC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
JCOEFPTR thiscoef;
|
||||
unsigned char *st;
|
||||
int tbl, k, kex;
|
||||
int p1, m1;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* There is always only one block per MCU */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||
m1 = (NEG_1) << cinfo->Al; /* -1 in the bit position being coded */
|
||||
|
||||
/* Establish EOBx (previous stage end-of-block) index */
|
||||
for (kex = cinfo->Se; kex > 0; kex--)
|
||||
if ((*block)[jpeg_natural_order[kex]]) break;
|
||||
|
||||
for (k = cinfo->Ss; k <= cinfo->Se; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (k > kex)
|
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||
for (;;) {
|
||||
thiscoef = *block + jpeg_natural_order[k];
|
||||
if (*thiscoef) { /* previously nonzero coef */
|
||||
if (arith_decode(cinfo, st + 2)) {
|
||||
if (*thiscoef < 0)
|
||||
*thiscoef += (JCOEF)m1;
|
||||
else
|
||||
*thiscoef += (JCOEF)p1;
|
||||
}
|
||||
break;
|
||||
}
|
||||
if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
|
||||
if (arith_decode(cinfo, entropy->fixed_bin))
|
||||
*thiscoef = (JCOEF)m1;
|
||||
else
|
||||
*thiscoef = (JCOEF)p1;
|
||||
break;
|
||||
}
|
||||
st += 3; k++;
|
||||
if (k > cinfo->Se) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* spectral overflow */
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decode one MCU's worth of arithmetic-compressed coefficients.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
jpeg_component_info *compptr;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl, sign, k;
|
||||
int v, m;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data ? MCU_data[blkn] : NULL;
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
|
||||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
|
||||
|
||||
tbl = compptr->dc_tbl_no;
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.19: Decode_DC_DIFF */
|
||||
if (arith_decode(cinfo, st) == 0)
|
||||
entropy->dc_context[ci] = 0;
|
||||
else {
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
sign = arith_decode(cinfo, st + 1);
|
||||
st += 2; st += sign;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
|
||||
else
|
||||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
entropy->last_dc_val[ci] = (entropy->last_dc_val[ci] + v) & 0xffff;
|
||||
}
|
||||
|
||||
if (block)
|
||||
(*block)[0] = (JCOEF)entropy->last_dc_val[ci];
|
||||
|
||||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
|
||||
|
||||
tbl = compptr->ac_tbl_no;
|
||||
|
||||
/* Figure F.20: Decode_AC_coefficients */
|
||||
for (k = 1; k <= DCTSIZE2 - 1; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||
while (arith_decode(cinfo, st + 1) == 0) {
|
||||
st += 3; k++;
|
||||
if (k > DCTSIZE2 - 1) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* spectral overflow */
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
sign = arith_decode(cinfo, entropy->fixed_bin);
|
||||
st += 2;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
if (arith_decode(cinfo, st)) {
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
if (block)
|
||||
(*block)[jpeg_natural_order[k]] = (JCOEF)v;
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an arithmetic-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass(j_decompress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
|
||||
int ci, tbl;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Validate progressive scan parameters */
|
||||
if (cinfo->Ss == 0) {
|
||||
if (cinfo->Se != 0)
|
||||
goto bad;
|
||||
} else {
|
||||
/* need not check Ss/Se < 0 since they came from unsigned bytes */
|
||||
if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1)
|
||||
goto bad;
|
||||
/* AC scans may have only one component */
|
||||
if (cinfo->comps_in_scan != 1)
|
||||
goto bad;
|
||||
}
|
||||
if (cinfo->Ah != 0) {
|
||||
/* Successive approximation refinement scan: must have Al = Ah-1. */
|
||||
if (cinfo->Ah - 1 != cinfo->Al)
|
||||
goto bad;
|
||||
}
|
||||
if (cinfo->Al > 13) { /* need not check for < 0 */
|
||||
bad:
|
||||
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
|
||||
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
|
||||
}
|
||||
/* Update progression status, and verify that scan order is legal.
|
||||
* Note that inter-scan inconsistencies are treated as warnings
|
||||
* not fatal errors ... not clear if this is right way to behave.
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
|
||||
int *coef_bit_ptr = &cinfo->coef_bits[cindex][0];
|
||||
int *prev_coef_bit_ptr =
|
||||
&cinfo->coef_bits[cindex + cinfo->num_components][0];
|
||||
if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
|
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
|
||||
for (coefi = MIN(cinfo->Ss, 1); coefi <= MAX(cinfo->Se, 9); coefi++) {
|
||||
if (cinfo->input_scan_number > 1)
|
||||
prev_coef_bit_ptr[coefi] = coef_bit_ptr[coefi];
|
||||
else
|
||||
prev_coef_bit_ptr[coefi] = 0;
|
||||
}
|
||||
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
|
||||
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
|
||||
if (cinfo->Ah != expected)
|
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
|
||||
coef_bit_ptr[coefi] = cinfo->Al;
|
||||
}
|
||||
}
|
||||
/* Select MCU decoding routine */
|
||||
if (cinfo->Ah == 0) {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.decode_mcu = decode_mcu_DC_first;
|
||||
else
|
||||
entropy->pub.decode_mcu = decode_mcu_AC_first;
|
||||
} else {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.decode_mcu = decode_mcu_DC_refine;
|
||||
else
|
||||
entropy->pub.decode_mcu = decode_mcu_AC_refine;
|
||||
}
|
||||
} else {
|
||||
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
||||
* This ought to be an error condition, but we make it a warning.
|
||||
*/
|
||||
if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
|
||||
cinfo->Ah != 0 || cinfo->Al != 0)
|
||||
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
|
||||
/* Select MCU decoding routine */
|
||||
entropy->pub.decode_mcu = decode_mcu;
|
||||
}
|
||||
|
||||
/* Allocate & initialize requested statistics areas */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
tbl = compptr->dc_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->dc_stats[tbl] == NULL)
|
||||
entropy->dc_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE, DC_STAT_BINS);
|
||||
memset(entropy->dc_stats[tbl], 0, DC_STAT_BINS);
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (!cinfo->progressive_mode || cinfo->Ss) {
|
||||
tbl = compptr->ac_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->ac_stats[tbl] == NULL)
|
||||
entropy->ac_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE, AC_STAT_BINS);
|
||||
memset(entropy->ac_stats[tbl], 0, AC_STAT_BINS);
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize arithmetic decoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0;
|
||||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
|
||||
entropy->pub.insufficient_data = FALSE;
|
||||
|
||||
/* Initialize restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for arithmetic entropy decoding.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_arith_decoder(j_decompress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy;
|
||||
int i;
|
||||
|
||||
entropy = (arith_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(arith_entropy_decoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
|
||||
entropy->pub.start_pass = start_pass;
|
||||
|
||||
/* Mark tables unallocated */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
entropy->dc_stats[i] = NULL;
|
||||
entropy->ac_stats[i] = NULL;
|
||||
}
|
||||
|
||||
/* Initialize index for fixed probability estimation */
|
||||
entropy->fixed_bin[0] = 113;
|
||||
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Create progression status table */
|
||||
int *coef_bit_ptr, ci;
|
||||
cinfo->coef_bits = (int (*)[DCTSIZE2])
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components * 2 * DCTSIZE2 *
|
||||
sizeof(int));
|
||||
coef_bit_ptr = &cinfo->coef_bits[0][0];
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
for (i = 0; i < DCTSIZE2; i++)
|
||||
*coef_bit_ptr++ = -1;
|
||||
}
|
||||
}
|
||||
199
thirdparty/libjpeg-turbo/src/jdatadst-tj.c
vendored
Normal file
199
thirdparty/libjpeg-turbo/src/jdatadst-tj.c
vendored
Normal file
@@ -0,0 +1,199 @@
|
||||
/*
|
||||
* jdatadst-tj.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* Modified 2009-2012 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2011, 2014, 2016, 2019, 2022-2023, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains compression data destination routines for the case of
|
||||
* emitting JPEG data to memory or to a file (or any stdio stream).
|
||||
* While these routines are sufficient for most applications,
|
||||
* some will want to use a different destination manager.
|
||||
* IMPORTANT: we assume that fwrite() will correctly transcribe an array of
|
||||
* JOCTETs into 8-bit-wide elements on external storage. If char is wider
|
||||
* than 8 bits on your machine, you may need to do some tweaking.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
void jpeg_mem_dest_tj(j_compress_ptr cinfo, unsigned char **outbuffer,
|
||||
size_t *outsize, boolean alloc);
|
||||
|
||||
|
||||
#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */
|
||||
|
||||
|
||||
/* Expanded data destination object for memory output */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_destination_mgr pub; /* public fields */
|
||||
|
||||
unsigned char **outbuffer; /* target buffer */
|
||||
size_t *outsize;
|
||||
unsigned char *newbuffer; /* newly allocated buffer */
|
||||
JOCTET *buffer; /* start of buffer */
|
||||
size_t bufsize;
|
||||
boolean alloc;
|
||||
} my_mem_destination_mgr;
|
||||
|
||||
typedef my_mem_destination_mgr *my_mem_dest_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize destination --- called by jpeg_start_compress
|
||||
* before any data is actually written.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
init_mem_destination(j_compress_ptr cinfo)
|
||||
{
|
||||
/* no work necessary here */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty the output buffer --- called whenever buffer fills up.
|
||||
*
|
||||
* In typical applications, this should write the entire output buffer
|
||||
* (ignoring the current state of next_output_byte & free_in_buffer),
|
||||
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||
* indicating that the buffer has been dumped.
|
||||
*
|
||||
* In applications that need to be able to suspend compression due to output
|
||||
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
|
||||
* In this situation, the compressor will return to its caller (possibly with
|
||||
* an indication that it has not accepted all the supplied scanlines). The
|
||||
* application should resume compression after it has made more room in the
|
||||
* output buffer. Note that there are substantial restrictions on the use of
|
||||
* suspension --- see the documentation.
|
||||
*
|
||||
* When suspending, the compressor will back up to a convenient restart point
|
||||
* (typically the start of the current MCU). next_output_byte & free_in_buffer
|
||||
* indicate where the restart point will be if the current call returns FALSE.
|
||||
* Data beyond this point will be regenerated after resumption, so do not
|
||||
* write it out when emptying the buffer externally.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
empty_mem_output_buffer(j_compress_ptr cinfo)
|
||||
{
|
||||
size_t nextsize;
|
||||
JOCTET *nextbuffer;
|
||||
my_mem_dest_ptr dest = (my_mem_dest_ptr)cinfo->dest;
|
||||
|
||||
if (!dest->alloc) ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
|
||||
/* Try to allocate new buffer with double size */
|
||||
nextsize = dest->bufsize * 2;
|
||||
nextbuffer = (JOCTET *)MALLOC(nextsize);
|
||||
|
||||
if (nextbuffer == NULL)
|
||||
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
|
||||
|
||||
memcpy(nextbuffer, dest->buffer, dest->bufsize);
|
||||
|
||||
free(dest->newbuffer);
|
||||
|
||||
dest->newbuffer = nextbuffer;
|
||||
|
||||
dest->pub.next_output_byte = nextbuffer + dest->bufsize;
|
||||
dest->pub.free_in_buffer = dest->bufsize;
|
||||
|
||||
dest->buffer = nextbuffer;
|
||||
dest->bufsize = nextsize;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Terminate destination --- called by jpeg_finish_compress
|
||||
* after all data has been written. Usually needs to flush buffer.
|
||||
*
|
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||
* application must deal with any cleanup that should happen even
|
||||
* for error exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
term_mem_destination(j_compress_ptr cinfo)
|
||||
{
|
||||
my_mem_dest_ptr dest = (my_mem_dest_ptr)cinfo->dest;
|
||||
|
||||
if (dest->alloc) *dest->outbuffer = dest->buffer;
|
||||
*dest->outsize = dest->bufsize - dest->pub.free_in_buffer;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for output to a memory buffer.
|
||||
* The caller may supply an own initial buffer with appropriate size.
|
||||
* Otherwise, or when the actual data output exceeds the given size,
|
||||
* the library adapts the buffer size as necessary.
|
||||
* The standard library functions malloc/free are used for allocating
|
||||
* larger memory, so the buffer is available to the application after
|
||||
* finishing compression, and then the application is responsible for
|
||||
* freeing the requested memory.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_dest_tj(j_compress_ptr cinfo, unsigned char **outbuffer,
|
||||
size_t *outsize, boolean alloc)
|
||||
{
|
||||
boolean reused = FALSE;
|
||||
my_mem_dest_ptr dest;
|
||||
|
||||
if (outbuffer == NULL || outsize == NULL) /* sanity check */
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
|
||||
/* The destination object is made permanent so that multiple JPEG images
|
||||
* can be written to the same buffer without re-executing jpeg_mem_dest.
|
||||
*/
|
||||
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->dest = (struct jpeg_destination_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT,
|
||||
sizeof(my_mem_destination_mgr));
|
||||
dest = (my_mem_dest_ptr)cinfo->dest;
|
||||
dest->newbuffer = NULL;
|
||||
dest->buffer = NULL;
|
||||
} else if (cinfo->dest->init_destination != init_mem_destination) {
|
||||
/* It is unsafe to reuse the existing destination manager unless it was
|
||||
* created by this function.
|
||||
*/
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
}
|
||||
|
||||
dest = (my_mem_dest_ptr)cinfo->dest;
|
||||
dest->pub.init_destination = init_mem_destination;
|
||||
dest->pub.empty_output_buffer = empty_mem_output_buffer;
|
||||
dest->pub.term_destination = term_mem_destination;
|
||||
if (dest->buffer == *outbuffer && *outbuffer != NULL && alloc)
|
||||
reused = TRUE;
|
||||
dest->outbuffer = outbuffer;
|
||||
dest->outsize = outsize;
|
||||
dest->alloc = alloc;
|
||||
|
||||
if (*outbuffer == NULL || *outsize == 0) {
|
||||
if (alloc) {
|
||||
/* Allocate initial buffer */
|
||||
dest->newbuffer = *outbuffer = (unsigned char *)MALLOC(OUTPUT_BUF_SIZE);
|
||||
if (dest->newbuffer == NULL)
|
||||
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
|
||||
*outsize = OUTPUT_BUF_SIZE;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
}
|
||||
|
||||
dest->pub.next_output_byte = dest->buffer = *outbuffer;
|
||||
if (!reused)
|
||||
dest->bufsize = *outsize;
|
||||
dest->pub.free_in_buffer = dest->bufsize;
|
||||
}
|
||||
277
thirdparty/libjpeg-turbo/src/jdatadst.c
vendored
Normal file
277
thirdparty/libjpeg-turbo/src/jdatadst.c
vendored
Normal file
@@ -0,0 +1,277 @@
|
||||
/*
|
||||
* jdatadst.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* Modified 2009-2012 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2013, 2016, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains compression data destination routines for the case of
|
||||
* emitting JPEG data to memory or to a file (or any stdio stream).
|
||||
* While these routines are sufficient for most applications,
|
||||
* some will want to use a different destination manager.
|
||||
* IMPORTANT: we assume that fwrite() will correctly transcribe an array of
|
||||
* JOCTETs into 8-bit-wide elements on external storage. If char is wider
|
||||
* than 8 bits on your machine, you may need to do some tweaking.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
|
||||
/* Expanded data destination object for stdio output */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_destination_mgr pub; /* public fields */
|
||||
|
||||
FILE *outfile; /* target stream */
|
||||
JOCTET *buffer; /* start of buffer */
|
||||
} my_destination_mgr;
|
||||
|
||||
typedef my_destination_mgr *my_dest_ptr;
|
||||
|
||||
#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */
|
||||
|
||||
|
||||
/* Expanded data destination object for memory output */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_destination_mgr pub; /* public fields */
|
||||
|
||||
unsigned char **outbuffer; /* target buffer */
|
||||
unsigned long *outsize;
|
||||
unsigned char *newbuffer; /* newly allocated buffer */
|
||||
JOCTET *buffer; /* start of buffer */
|
||||
size_t bufsize;
|
||||
} my_mem_destination_mgr;
|
||||
|
||||
typedef my_mem_destination_mgr *my_mem_dest_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize destination --- called by jpeg_start_compress
|
||||
* before any data is actually written.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
init_destination(j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr)cinfo->dest;
|
||||
|
||||
/* Allocate the output buffer --- it will be released when done with image */
|
||||
dest->buffer = (JOCTET *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
OUTPUT_BUF_SIZE * sizeof(JOCTET));
|
||||
|
||||
dest->pub.next_output_byte = dest->buffer;
|
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
|
||||
}
|
||||
|
||||
METHODDEF(void)
|
||||
init_mem_destination(j_compress_ptr cinfo)
|
||||
{
|
||||
/* no work necessary here */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty the output buffer --- called whenever buffer fills up.
|
||||
*
|
||||
* In typical applications, this should write the entire output buffer
|
||||
* (ignoring the current state of next_output_byte & free_in_buffer),
|
||||
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||
* indicating that the buffer has been dumped.
|
||||
*
|
||||
* In applications that need to be able to suspend compression due to output
|
||||
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
|
||||
* In this situation, the compressor will return to its caller (possibly with
|
||||
* an indication that it has not accepted all the supplied scanlines). The
|
||||
* application should resume compression after it has made more room in the
|
||||
* output buffer. Note that there are substantial restrictions on the use of
|
||||
* suspension --- see the documentation.
|
||||
*
|
||||
* When suspending, the compressor will back up to a convenient restart point
|
||||
* (typically the start of the current MCU). next_output_byte & free_in_buffer
|
||||
* indicate where the restart point will be if the current call returns FALSE.
|
||||
* Data beyond this point will be regenerated after resumption, so do not
|
||||
* write it out when emptying the buffer externally.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
empty_output_buffer(j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr)cinfo->dest;
|
||||
|
||||
if (fwrite(dest->buffer, 1, OUTPUT_BUF_SIZE, dest->outfile) !=
|
||||
(size_t)OUTPUT_BUF_SIZE)
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
|
||||
dest->pub.next_output_byte = dest->buffer;
|
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
METHODDEF(boolean)
|
||||
empty_mem_output_buffer(j_compress_ptr cinfo)
|
||||
{
|
||||
size_t nextsize;
|
||||
JOCTET *nextbuffer;
|
||||
my_mem_dest_ptr dest = (my_mem_dest_ptr)cinfo->dest;
|
||||
|
||||
/* Try to allocate new buffer with double size */
|
||||
nextsize = dest->bufsize * 2;
|
||||
nextbuffer = (JOCTET *)malloc(nextsize);
|
||||
|
||||
if (nextbuffer == NULL)
|
||||
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
|
||||
|
||||
memcpy(nextbuffer, dest->buffer, dest->bufsize);
|
||||
|
||||
free(dest->newbuffer);
|
||||
|
||||
dest->newbuffer = nextbuffer;
|
||||
|
||||
dest->pub.next_output_byte = nextbuffer + dest->bufsize;
|
||||
dest->pub.free_in_buffer = dest->bufsize;
|
||||
|
||||
dest->buffer = nextbuffer;
|
||||
dest->bufsize = nextsize;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Terminate destination --- called by jpeg_finish_compress
|
||||
* after all data has been written. Usually needs to flush buffer.
|
||||
*
|
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||
* application must deal with any cleanup that should happen even
|
||||
* for error exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
term_destination(j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr)cinfo->dest;
|
||||
size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer;
|
||||
|
||||
/* Write any data remaining in the buffer */
|
||||
if (datacount > 0) {
|
||||
if (fwrite(dest->buffer, 1, datacount, dest->outfile) != datacount)
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
}
|
||||
fflush(dest->outfile);
|
||||
/* Make sure we wrote the output file OK */
|
||||
if (ferror(dest->outfile))
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
}
|
||||
|
||||
METHODDEF(void)
|
||||
term_mem_destination(j_compress_ptr cinfo)
|
||||
{
|
||||
my_mem_dest_ptr dest = (my_mem_dest_ptr)cinfo->dest;
|
||||
|
||||
*dest->outbuffer = dest->buffer;
|
||||
*dest->outsize = (unsigned long)(dest->bufsize - dest->pub.free_in_buffer);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for output to a stdio stream.
|
||||
* The caller must have already opened the stream, and is responsible
|
||||
* for closing it after finishing compression.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_stdio_dest(j_compress_ptr cinfo, FILE *outfile)
|
||||
{
|
||||
my_dest_ptr dest;
|
||||
|
||||
/* The destination object is made permanent so that multiple JPEG images
|
||||
* can be written to the same file without re-executing jpeg_stdio_dest.
|
||||
*/
|
||||
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->dest = (struct jpeg_destination_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT,
|
||||
sizeof(my_destination_mgr));
|
||||
} else if (cinfo->dest->init_destination != init_destination) {
|
||||
/* It is unsafe to reuse the existing destination manager unless it was
|
||||
* created by this function. Otherwise, there is no guarantee that the
|
||||
* opaque structure is the right size. Note that we could just create a
|
||||
* new structure, but the old structure would not be freed until
|
||||
* jpeg_destroy_compress() was called.
|
||||
*/
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
}
|
||||
|
||||
dest = (my_dest_ptr)cinfo->dest;
|
||||
dest->pub.init_destination = init_destination;
|
||||
dest->pub.empty_output_buffer = empty_output_buffer;
|
||||
dest->pub.term_destination = term_destination;
|
||||
dest->outfile = outfile;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for output to a memory buffer.
|
||||
* The caller may supply an own initial buffer with appropriate size.
|
||||
* Otherwise, or when the actual data output exceeds the given size,
|
||||
* the library adapts the buffer size as necessary.
|
||||
* The standard library functions malloc/free are used for allocating
|
||||
* larger memory, so the buffer is available to the application after
|
||||
* finishing compression, and then the application is responsible for
|
||||
* freeing the requested memory.
|
||||
* Note: An initial buffer supplied by the caller is expected to be
|
||||
* managed by the application. The library does not free such buffer
|
||||
* when allocating a larger buffer.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_dest(j_compress_ptr cinfo, unsigned char **outbuffer,
|
||||
unsigned long *outsize)
|
||||
{
|
||||
my_mem_dest_ptr dest;
|
||||
|
||||
if (outbuffer == NULL || outsize == NULL) /* sanity check */
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
|
||||
/* The destination object is made permanent so that multiple JPEG images
|
||||
* can be written to the same buffer without re-executing jpeg_mem_dest.
|
||||
*/
|
||||
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->dest = (struct jpeg_destination_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT,
|
||||
sizeof(my_mem_destination_mgr));
|
||||
} else if (cinfo->dest->init_destination != init_mem_destination) {
|
||||
/* It is unsafe to reuse the existing destination manager unless it was
|
||||
* created by this function.
|
||||
*/
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
}
|
||||
|
||||
dest = (my_mem_dest_ptr)cinfo->dest;
|
||||
dest->pub.init_destination = init_mem_destination;
|
||||
dest->pub.empty_output_buffer = empty_mem_output_buffer;
|
||||
dest->pub.term_destination = term_mem_destination;
|
||||
dest->outbuffer = outbuffer;
|
||||
dest->outsize = outsize;
|
||||
dest->newbuffer = NULL;
|
||||
|
||||
if (*outbuffer == NULL || *outsize == 0) {
|
||||
/* Allocate initial buffer */
|
||||
dest->newbuffer = *outbuffer = (unsigned char *)malloc(OUTPUT_BUF_SIZE);
|
||||
if (dest->newbuffer == NULL)
|
||||
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
|
||||
*outsize = OUTPUT_BUF_SIZE;
|
||||
}
|
||||
|
||||
dest->pub.next_output_byte = dest->buffer = *outbuffer;
|
||||
dest->pub.free_in_buffer = dest->bufsize = *outsize;
|
||||
}
|
||||
194
thirdparty/libjpeg-turbo/src/jdatasrc-tj.c
vendored
Normal file
194
thirdparty/libjpeg-turbo/src/jdatasrc-tj.c
vendored
Normal file
@@ -0,0 +1,194 @@
|
||||
/*
|
||||
* jdatasrc-tj.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* Modified 2009-2011 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2011, 2016, 2019, 2023, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains decompression data source routines for the case of
|
||||
* reading JPEG data from memory or from a file (or any stdio stream).
|
||||
* While these routines are sufficient for most applications,
|
||||
* some will want to use a different source manager.
|
||||
* IMPORTANT: we assume that fread() will correctly transcribe an array of
|
||||
* JOCTETs from 8-bit-wide elements on external storage. If char is wider
|
||||
* than 8 bits on your machine, you may need to do some tweaking.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
void jpeg_mem_src_tj(j_decompress_ptr cinfo, const unsigned char *inbuffer,
|
||||
size_t insize);
|
||||
|
||||
|
||||
/*
|
||||
* Initialize source --- called by jpeg_read_header
|
||||
* before any data is actually read.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
init_mem_source(j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work necessary here */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fill the input buffer --- called whenever buffer is emptied.
|
||||
*
|
||||
* In typical applications, this should read fresh data into the buffer
|
||||
* (ignoring the current state of next_input_byte & bytes_in_buffer),
|
||||
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||
* indicating that the buffer has been reloaded. It is not necessary to
|
||||
* fill the buffer entirely, only to obtain at least one more byte.
|
||||
*
|
||||
* There is no such thing as an EOF return. If the end of the file has been
|
||||
* reached, the routine has a choice of ERREXIT() or inserting fake data into
|
||||
* the buffer. In most cases, generating a warning message and inserting a
|
||||
* fake EOI marker is the best course of action --- this will allow the
|
||||
* decompressor to output however much of the image is there. However,
|
||||
* the resulting error message is misleading if the real problem is an empty
|
||||
* input file, so we handle that case specially.
|
||||
*
|
||||
* In applications that need to be able to suspend compression due to input
|
||||
* not being available yet, a FALSE return indicates that no more data can be
|
||||
* obtained right now, but more may be forthcoming later. In this situation,
|
||||
* the decompressor will return to its caller (with an indication of the
|
||||
* number of scanlines it has read, if any). The application should resume
|
||||
* decompression after it has loaded more data into the input buffer. Note
|
||||
* that there are substantial restrictions on the use of suspension --- see
|
||||
* the documentation.
|
||||
*
|
||||
* When suspending, the decompressor will back up to a convenient restart point
|
||||
* (typically the start of the current MCU). next_input_byte & bytes_in_buffer
|
||||
* indicate where the restart point will be if the current call returns FALSE.
|
||||
* Data beyond this point must be rescanned after resumption, so move it to
|
||||
* the front of the buffer rather than discarding it.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
fill_mem_input_buffer(j_decompress_ptr cinfo)
|
||||
{
|
||||
static const JOCTET mybuffer[4] = {
|
||||
(JOCTET)0xFF, (JOCTET)JPEG_EOI, 0, 0
|
||||
};
|
||||
|
||||
/* The whole JPEG data is expected to reside in the supplied memory
|
||||
* buffer, so any request for more data beyond the given buffer size
|
||||
* is treated as an error.
|
||||
*/
|
||||
WARNMS(cinfo, JWRN_JPEG_EOF);
|
||||
|
||||
/* Insert a fake EOI marker */
|
||||
|
||||
cinfo->src->next_input_byte = mybuffer;
|
||||
cinfo->src->bytes_in_buffer = 2;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Skip data --- used to skip over a potentially large amount of
|
||||
* uninteresting data (such as an APPn marker).
|
||||
*
|
||||
* Writers of suspendable-input applications must note that skip_input_data
|
||||
* is not granted the right to give a suspension return. If the skip extends
|
||||
* beyond the data currently in the buffer, the buffer can be marked empty so
|
||||
* that the next read will cause a fill_input_buffer call that can suspend.
|
||||
* Arranging for additional bytes to be discarded before reloading the input
|
||||
* buffer is the application writer's problem.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
skip_input_data(j_decompress_ptr cinfo, long num_bytes)
|
||||
{
|
||||
struct jpeg_source_mgr *src = cinfo->src;
|
||||
|
||||
/* Just a dumb implementation for now. Could use fseek() except
|
||||
* it doesn't work on pipes. Not clear that being smart is worth
|
||||
* any trouble anyway --- large skips are infrequent.
|
||||
*/
|
||||
if (num_bytes > 0) {
|
||||
while (num_bytes > (long)src->bytes_in_buffer) {
|
||||
num_bytes -= (long)src->bytes_in_buffer;
|
||||
(void)(*src->fill_input_buffer) (cinfo);
|
||||
/* note we assume that fill_input_buffer will never return FALSE,
|
||||
* so suspension need not be handled.
|
||||
*/
|
||||
}
|
||||
src->next_input_byte += (size_t)num_bytes;
|
||||
src->bytes_in_buffer -= (size_t)num_bytes;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* An additional method that can be provided by data source modules is the
|
||||
* resync_to_restart method for error recovery in the presence of RST markers.
|
||||
* For the moment, this source module just uses the default resync method
|
||||
* provided by the JPEG library. That method assumes that no backtracking
|
||||
* is possible.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Terminate source --- called by jpeg_finish_decompress
|
||||
* after all data has been read. Often a no-op.
|
||||
*
|
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||
* application must deal with any cleanup that should happen even
|
||||
* for error exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
term_source(j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work necessary here */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for input from a supplied memory buffer.
|
||||
* The buffer must contain the whole JPEG data.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_src_tj(j_decompress_ptr cinfo, const unsigned char *inbuffer,
|
||||
size_t insize)
|
||||
{
|
||||
struct jpeg_source_mgr *src;
|
||||
|
||||
if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */
|
||||
ERREXIT(cinfo, JERR_INPUT_EMPTY);
|
||||
|
||||
/* The source object is made permanent so that a series of JPEG images
|
||||
* can be read from the same buffer by calling jpeg_mem_src only before
|
||||
* the first one.
|
||||
*/
|
||||
if (cinfo->src == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->src = (struct jpeg_source_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT,
|
||||
sizeof(struct jpeg_source_mgr));
|
||||
} else if (cinfo->src->init_source != init_mem_source) {
|
||||
/* It is unsafe to reuse the existing source manager unless it was created
|
||||
* by this function.
|
||||
*/
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
}
|
||||
|
||||
src = cinfo->src;
|
||||
src->init_source = init_mem_source;
|
||||
src->fill_input_buffer = fill_mem_input_buffer;
|
||||
src->skip_input_data = skip_input_data;
|
||||
src->resync_to_restart = jpeg_resync_to_restart; /* use default method */
|
||||
src->term_source = term_source;
|
||||
src->bytes_in_buffer = insize;
|
||||
src->next_input_byte = (const JOCTET *)inbuffer;
|
||||
}
|
||||
289
thirdparty/libjpeg-turbo/src/jdatasrc.c
vendored
Normal file
289
thirdparty/libjpeg-turbo/src/jdatasrc.c
vendored
Normal file
@@ -0,0 +1,289 @@
|
||||
/*
|
||||
* jdatasrc.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* Modified 2009-2011 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2013, 2016, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains decompression data source routines for the case of
|
||||
* reading JPEG data from memory or from a file (or any stdio stream).
|
||||
* While these routines are sufficient for most applications,
|
||||
* some will want to use a different source manager.
|
||||
* IMPORTANT: we assume that fread() will correctly transcribe an array of
|
||||
* JOCTETs from 8-bit-wide elements on external storage. If char is wider
|
||||
* than 8 bits on your machine, you may need to do some tweaking.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
|
||||
/* Expanded data source object for stdio input */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_source_mgr pub; /* public fields */
|
||||
|
||||
FILE *infile; /* source stream */
|
||||
JOCTET *buffer; /* start of buffer */
|
||||
boolean start_of_file; /* have we gotten any data yet? */
|
||||
} my_source_mgr;
|
||||
|
||||
typedef my_source_mgr *my_src_ptr;
|
||||
|
||||
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize source --- called by jpeg_read_header
|
||||
* before any data is actually read.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
init_source(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr)cinfo->src;
|
||||
|
||||
/* We reset the empty-input-file flag for each image,
|
||||
* but we don't clear the input buffer.
|
||||
* This is correct behavior for reading a series of images from one source.
|
||||
*/
|
||||
src->start_of_file = TRUE;
|
||||
}
|
||||
|
||||
METHODDEF(void)
|
||||
init_mem_source(j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work necessary here */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fill the input buffer --- called whenever buffer is emptied.
|
||||
*
|
||||
* In typical applications, this should read fresh data into the buffer
|
||||
* (ignoring the current state of next_input_byte & bytes_in_buffer),
|
||||
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||
* indicating that the buffer has been reloaded. It is not necessary to
|
||||
* fill the buffer entirely, only to obtain at least one more byte.
|
||||
*
|
||||
* There is no such thing as an EOF return. If the end of the file has been
|
||||
* reached, the routine has a choice of ERREXIT() or inserting fake data into
|
||||
* the buffer. In most cases, generating a warning message and inserting a
|
||||
* fake EOI marker is the best course of action --- this will allow the
|
||||
* decompressor to output however much of the image is there. However,
|
||||
* the resulting error message is misleading if the real problem is an empty
|
||||
* input file, so we handle that case specially.
|
||||
*
|
||||
* In applications that need to be able to suspend compression due to input
|
||||
* not being available yet, a FALSE return indicates that no more data can be
|
||||
* obtained right now, but more may be forthcoming later. In this situation,
|
||||
* the decompressor will return to its caller (with an indication of the
|
||||
* number of scanlines it has read, if any). The application should resume
|
||||
* decompression after it has loaded more data into the input buffer. Note
|
||||
* that there are substantial restrictions on the use of suspension --- see
|
||||
* the documentation.
|
||||
*
|
||||
* When suspending, the decompressor will back up to a convenient restart point
|
||||
* (typically the start of the current MCU). next_input_byte & bytes_in_buffer
|
||||
* indicate where the restart point will be if the current call returns FALSE.
|
||||
* Data beyond this point must be rescanned after resumption, so move it to
|
||||
* the front of the buffer rather than discarding it.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
fill_input_buffer(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr)cinfo->src;
|
||||
size_t nbytes;
|
||||
|
||||
nbytes = fread(src->buffer, 1, INPUT_BUF_SIZE, src->infile);
|
||||
|
||||
if (nbytes <= 0) {
|
||||
if (src->start_of_file) /* Treat empty input file as fatal error */
|
||||
ERREXIT(cinfo, JERR_INPUT_EMPTY);
|
||||
WARNMS(cinfo, JWRN_JPEG_EOF);
|
||||
/* Insert a fake EOI marker */
|
||||
src->buffer[0] = (JOCTET)0xFF;
|
||||
src->buffer[1] = (JOCTET)JPEG_EOI;
|
||||
nbytes = 2;
|
||||
}
|
||||
|
||||
src->pub.next_input_byte = src->buffer;
|
||||
src->pub.bytes_in_buffer = nbytes;
|
||||
src->start_of_file = FALSE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
METHODDEF(boolean)
|
||||
fill_mem_input_buffer(j_decompress_ptr cinfo)
|
||||
{
|
||||
static const JOCTET mybuffer[4] = {
|
||||
(JOCTET)0xFF, (JOCTET)JPEG_EOI, 0, 0
|
||||
};
|
||||
|
||||
/* The whole JPEG data is expected to reside in the supplied memory
|
||||
* buffer, so any request for more data beyond the given buffer size
|
||||
* is treated as an error.
|
||||
*/
|
||||
WARNMS(cinfo, JWRN_JPEG_EOF);
|
||||
|
||||
/* Insert a fake EOI marker */
|
||||
|
||||
cinfo->src->next_input_byte = mybuffer;
|
||||
cinfo->src->bytes_in_buffer = 2;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Skip data --- used to skip over a potentially large amount of
|
||||
* uninteresting data (such as an APPn marker).
|
||||
*
|
||||
* Writers of suspendable-input applications must note that skip_input_data
|
||||
* is not granted the right to give a suspension return. If the skip extends
|
||||
* beyond the data currently in the buffer, the buffer can be marked empty so
|
||||
* that the next read will cause a fill_input_buffer call that can suspend.
|
||||
* Arranging for additional bytes to be discarded before reloading the input
|
||||
* buffer is the application writer's problem.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
skip_input_data(j_decompress_ptr cinfo, long num_bytes)
|
||||
{
|
||||
struct jpeg_source_mgr *src = cinfo->src;
|
||||
|
||||
/* Just a dumb implementation for now. Could use fseek() except
|
||||
* it doesn't work on pipes. Not clear that being smart is worth
|
||||
* any trouble anyway --- large skips are infrequent.
|
||||
*/
|
||||
if (num_bytes > 0) {
|
||||
while (num_bytes > (long)src->bytes_in_buffer) {
|
||||
num_bytes -= (long)src->bytes_in_buffer;
|
||||
(void)(*src->fill_input_buffer) (cinfo);
|
||||
/* note we assume that fill_input_buffer will never return FALSE,
|
||||
* so suspension need not be handled.
|
||||
*/
|
||||
}
|
||||
src->next_input_byte += (size_t)num_bytes;
|
||||
src->bytes_in_buffer -= (size_t)num_bytes;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* An additional method that can be provided by data source modules is the
|
||||
* resync_to_restart method for error recovery in the presence of RST markers.
|
||||
* For the moment, this source module just uses the default resync method
|
||||
* provided by the JPEG library. That method assumes that no backtracking
|
||||
* is possible.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Terminate source --- called by jpeg_finish_decompress
|
||||
* after all data has been read. Often a no-op.
|
||||
*
|
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||
* application must deal with any cleanup that should happen even
|
||||
* for error exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
term_source(j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work necessary here */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for input from a stdio stream.
|
||||
* The caller must have already opened the stream, and is responsible
|
||||
* for closing it after finishing decompression.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_stdio_src(j_decompress_ptr cinfo, FILE *infile)
|
||||
{
|
||||
my_src_ptr src;
|
||||
|
||||
/* The source object and input buffer are made permanent so that a series
|
||||
* of JPEG images can be read from the same file by calling jpeg_stdio_src
|
||||
* only before the first one. (If we discarded the buffer at the end of
|
||||
* one image, we'd likely lose the start of the next one.)
|
||||
*/
|
||||
if (cinfo->src == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->src = (struct jpeg_source_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT,
|
||||
sizeof(my_source_mgr));
|
||||
src = (my_src_ptr)cinfo->src;
|
||||
src->buffer = (JOCTET *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT,
|
||||
INPUT_BUF_SIZE * sizeof(JOCTET));
|
||||
} else if (cinfo->src->init_source != init_source) {
|
||||
/* It is unsafe to reuse the existing source manager unless it was created
|
||||
* by this function. Otherwise, there is no guarantee that the opaque
|
||||
* structure is the right size. Note that we could just create a new
|
||||
* structure, but the old structure would not be freed until
|
||||
* jpeg_destroy_decompress() was called.
|
||||
*/
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
}
|
||||
|
||||
src = (my_src_ptr)cinfo->src;
|
||||
src->pub.init_source = init_source;
|
||||
src->pub.fill_input_buffer = fill_input_buffer;
|
||||
src->pub.skip_input_data = skip_input_data;
|
||||
src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
|
||||
src->pub.term_source = term_source;
|
||||
src->infile = infile;
|
||||
src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
|
||||
src->pub.next_input_byte = NULL; /* until buffer loaded */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for input from a supplied memory buffer.
|
||||
* The buffer must contain the whole JPEG data.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_src(j_decompress_ptr cinfo, const unsigned char *inbuffer,
|
||||
unsigned long insize)
|
||||
{
|
||||
struct jpeg_source_mgr *src;
|
||||
|
||||
if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */
|
||||
ERREXIT(cinfo, JERR_INPUT_EMPTY);
|
||||
|
||||
/* The source object is made permanent so that a series of JPEG images
|
||||
* can be read from the same buffer by calling jpeg_mem_src only before
|
||||
* the first one.
|
||||
*/
|
||||
if (cinfo->src == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->src = (struct jpeg_source_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT,
|
||||
sizeof(struct jpeg_source_mgr));
|
||||
} else if (cinfo->src->init_source != init_mem_source) {
|
||||
/* It is unsafe to reuse the existing source manager unless it was created
|
||||
* by this function.
|
||||
*/
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
}
|
||||
|
||||
src = cinfo->src;
|
||||
src->init_source = init_mem_source;
|
||||
src->fill_input_buffer = fill_mem_input_buffer;
|
||||
src->skip_input_data = skip_input_data;
|
||||
src->resync_to_restart = jpeg_resync_to_restart; /* use default method */
|
||||
src->term_source = term_source;
|
||||
src->bytes_in_buffer = (size_t)insize;
|
||||
src->next_input_byte = (const JOCTET *)inbuffer;
|
||||
}
|
||||
885
thirdparty/libjpeg-turbo/src/jdcoefct.c
vendored
Normal file
885
thirdparty/libjpeg-turbo/src/jdcoefct.c
vendored
Normal file
@@ -0,0 +1,885 @@
|
||||
/*
|
||||
* jdcoefct.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||||
* Copyright (C) 2010, 2015-2016, 2019-2020, 2022-2023, D. R. Commander.
|
||||
* Copyright (C) 2015, 2020, Google, Inc.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains the coefficient buffer controller for decompression.
|
||||
* This controller is the top level of the lossy JPEG decompressor proper.
|
||||
* The coefficient buffer lies between entropy decoding and inverse-DCT steps.
|
||||
*
|
||||
* In buffered-image mode, this controller is the interface between
|
||||
* input-oriented processing and output-oriented processing.
|
||||
* Also, the input side (only) is used when reading a file for transcoding.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
#include "jdcoefct.h"
|
||||
#include "jpegapicomp.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo,
|
||||
_JSAMPIMAGE output_buf);
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
METHODDEF(int) decompress_data(j_decompress_ptr cinfo, _JSAMPIMAGE output_buf);
|
||||
#endif
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo);
|
||||
METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo,
|
||||
_JSAMPIMAGE output_buf);
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an input processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_input_pass(j_decompress_ptr cinfo)
|
||||
{
|
||||
cinfo->input_iMCU_row = 0;
|
||||
start_iMCU_row(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an output processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_output_pass(j_decompress_ptr cinfo)
|
||||
{
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
|
||||
/* If multipass, check to see whether to use block smoothing on this pass */
|
||||
if (coef->pub.coef_arrays != NULL) {
|
||||
if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
|
||||
coef->pub._decompress_data = decompress_smooth_data;
|
||||
else
|
||||
coef->pub._decompress_data = decompress_data;
|
||||
}
|
||||
#endif
|
||||
cinfo->output_iMCU_row = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decompress and return some data in the single-pass case.
|
||||
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
||||
* Input and output must run in lockstep since we have only a one-MCU buffer.
|
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
||||
*
|
||||
* NB: output_buf contains a plane for each component in image,
|
||||
* which we index according to the component's SOF position.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
decompress_onepass(j_decompress_ptr cinfo, _JSAMPIMAGE output_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
int blkn, ci, xindex, yindex, yoffset, useful_width;
|
||||
_JSAMPARRAY output_ptr;
|
||||
JDIMENSION start_col, output_col;
|
||||
jpeg_component_info *compptr;
|
||||
_inverse_DCT_method_ptr inverse_DCT;
|
||||
|
||||
/* Loop to process as much as one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
|
||||
MCU_col_num++) {
|
||||
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
|
||||
jzero_far((void *)coef->MCU_buffer[0],
|
||||
(size_t)(cinfo->blocks_in_MCU * sizeof(JBLOCK)));
|
||||
if (!cinfo->entropy->insufficient_data)
|
||||
cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row;
|
||||
if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->MCU_ctr = MCU_col_num;
|
||||
return JPEG_SUSPENDED;
|
||||
}
|
||||
|
||||
/* Only perform the IDCT on blocks that are contained within the desired
|
||||
* cropping region.
|
||||
*/
|
||||
if (MCU_col_num >= cinfo->master->first_iMCU_col &&
|
||||
MCU_col_num <= cinfo->master->last_iMCU_col) {
|
||||
/* Determine where data should go in output_buf and do the IDCT thing.
|
||||
* We skip dummy blocks at the right and bottom edges (but blkn gets
|
||||
* incremented past them!). Note the inner loop relies on having
|
||||
* allocated the MCU_buffer[] blocks sequentially.
|
||||
*/
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Don't bother to IDCT an uninteresting component. */
|
||||
if (!compptr->component_needed) {
|
||||
blkn += compptr->MCU_blocks;
|
||||
continue;
|
||||
}
|
||||
inverse_DCT = cinfo->idct->_inverse_DCT[compptr->component_index];
|
||||
useful_width = (MCU_col_num < last_MCU_col) ?
|
||||
compptr->MCU_width : compptr->last_col_width;
|
||||
output_ptr = output_buf[compptr->component_index] +
|
||||
yoffset * compptr->_DCT_scaled_size;
|
||||
start_col = (MCU_col_num - cinfo->master->first_iMCU_col) *
|
||||
compptr->MCU_sample_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
if (cinfo->input_iMCU_row < last_iMCU_row ||
|
||||
yoffset + yindex < compptr->last_row_height) {
|
||||
output_col = start_col;
|
||||
for (xindex = 0; xindex < useful_width; xindex++) {
|
||||
(*inverse_DCT) (cinfo, compptr,
|
||||
(JCOEFPTR)coef->MCU_buffer[blkn + xindex],
|
||||
output_ptr, output_col);
|
||||
output_col += compptr->_DCT_scaled_size;
|
||||
}
|
||||
}
|
||||
blkn += compptr->MCU_width;
|
||||
output_ptr += compptr->_DCT_scaled_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->MCU_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
cinfo->output_iMCU_row++;
|
||||
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
|
||||
start_iMCU_row(cinfo);
|
||||
return JPEG_ROW_COMPLETED;
|
||||
}
|
||||
/* Completed the scan */
|
||||
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
||||
return JPEG_SCAN_COMPLETED;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Dummy consume-input routine for single-pass operation.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
dummy_consume_data(j_decompress_ptr cinfo)
|
||||
{
|
||||
return JPEG_SUSPENDED; /* Always indicate nothing was done */
|
||||
}
|
||||
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
/*
|
||||
* Consume input data and store it in the full-image coefficient buffer.
|
||||
* We read as much as one fully interleaved MCU row ("iMCU" row) per call,
|
||||
* ie, v_samp_factor block rows for each component in the scan.
|
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
consume_data(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
int blkn, ci, xindex, yindex, yoffset;
|
||||
JDIMENSION start_col;
|
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||
JBLOCKROW buffer_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Align the virtual buffers for the components used in this scan. */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr)cinfo, coef->whole_image[compptr->component_index],
|
||||
cinfo->input_iMCU_row * compptr->v_samp_factor,
|
||||
(JDIMENSION)compptr->v_samp_factor, TRUE);
|
||||
/* Note: entropy decoder expects buffer to be zeroed,
|
||||
* but this is handled automatically by the memory manager
|
||||
* because we requested a pre-zeroed array.
|
||||
*/
|
||||
}
|
||||
|
||||
/* Loop to process one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
||||
MCU_col_num++) {
|
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
buffer_ptr = buffer[ci][yindex + yoffset] + start_col;
|
||||
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
||||
coef->MCU_buffer[blkn++] = buffer_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!cinfo->entropy->insufficient_data)
|
||||
cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row;
|
||||
/* Try to fetch the MCU. */
|
||||
if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->MCU_ctr = MCU_col_num;
|
||||
return JPEG_SUSPENDED;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->MCU_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
|
||||
start_iMCU_row(cinfo);
|
||||
return JPEG_ROW_COMPLETED;
|
||||
}
|
||||
/* Completed the scan */
|
||||
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
||||
return JPEG_SCAN_COMPLETED;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decompress and return some data in the multi-pass case.
|
||||
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
||||
*
|
||||
* NB: output_buf contains a plane for each component in image.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
decompress_data(j_decompress_ptr cinfo, _JSAMPIMAGE output_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
JDIMENSION block_num;
|
||||
int ci, block_row, block_rows;
|
||||
JBLOCKARRAY buffer;
|
||||
JBLOCKROW buffer_ptr;
|
||||
_JSAMPARRAY output_ptr;
|
||||
JDIMENSION output_col;
|
||||
jpeg_component_info *compptr;
|
||||
_inverse_DCT_method_ptr inverse_DCT;
|
||||
|
||||
/* Force some input to be done if we are getting ahead of the input. */
|
||||
while (cinfo->input_scan_number < cinfo->output_scan_number ||
|
||||
(cinfo->input_scan_number == cinfo->output_scan_number &&
|
||||
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
|
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
||||
return JPEG_SUSPENDED;
|
||||
}
|
||||
|
||||
/* OK, output from the virtual arrays. */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Don't bother to IDCT an uninteresting component. */
|
||||
if (!compptr->component_needed)
|
||||
continue;
|
||||
/* Align the virtual buffer for this component. */
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr)cinfo, coef->whole_image[ci],
|
||||
cinfo->output_iMCU_row * compptr->v_samp_factor,
|
||||
(JDIMENSION)compptr->v_samp_factor, FALSE);
|
||||
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||
if (cinfo->output_iMCU_row < last_iMCU_row)
|
||||
block_rows = compptr->v_samp_factor;
|
||||
else {
|
||||
/* NB: can't use last_row_height here; it is input-side-dependent! */
|
||||
block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||
}
|
||||
inverse_DCT = cinfo->idct->_inverse_DCT[ci];
|
||||
output_ptr = output_buf[ci];
|
||||
/* Loop over all DCT blocks to be processed. */
|
||||
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||
buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
|
||||
output_col = 0;
|
||||
for (block_num = cinfo->master->first_MCU_col[ci];
|
||||
block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
|
||||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR)buffer_ptr, output_ptr,
|
||||
output_col);
|
||||
buffer_ptr++;
|
||||
output_col += compptr->_DCT_scaled_size;
|
||||
}
|
||||
output_ptr += compptr->_DCT_scaled_size;
|
||||
}
|
||||
}
|
||||
|
||||
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
|
||||
return JPEG_ROW_COMPLETED;
|
||||
return JPEG_SCAN_COMPLETED;
|
||||
}
|
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
|
||||
/*
|
||||
* This code applies interblock smoothing; the first 9 AC coefficients are
|
||||
* estimated from the DC values of a DCT block and its 24 neighboring blocks.
|
||||
* We apply smoothing only for progressive JPEG decoding, and only if
|
||||
* the coefficients it can estimate are not yet known to full precision.
|
||||
*/
|
||||
|
||||
/* Natural-order array positions of the first 9 zigzag-order coefficients */
|
||||
#define Q01_POS 1
|
||||
#define Q10_POS 8
|
||||
#define Q20_POS 16
|
||||
#define Q11_POS 9
|
||||
#define Q02_POS 2
|
||||
#define Q03_POS 3
|
||||
#define Q12_POS 10
|
||||
#define Q21_POS 17
|
||||
#define Q30_POS 24
|
||||
|
||||
/*
|
||||
* Determine whether block smoothing is applicable and safe.
|
||||
* We also latch the current states of the coef_bits[] entries for the
|
||||
* AC coefficients; otherwise, if the input side of the decompressor
|
||||
* advances into a new scan, we might think the coefficients are known
|
||||
* more accurately than they really are.
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
smoothing_ok(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
boolean smoothing_useful = FALSE;
|
||||
int ci, coefi;
|
||||
jpeg_component_info *compptr;
|
||||
JQUANT_TBL *qtable;
|
||||
int *coef_bits, *prev_coef_bits;
|
||||
int *coef_bits_latch, *prev_coef_bits_latch;
|
||||
|
||||
if (!cinfo->progressive_mode || cinfo->coef_bits == NULL)
|
||||
return FALSE;
|
||||
|
||||
/* Allocate latch area if not already done */
|
||||
if (coef->coef_bits_latch == NULL)
|
||||
coef->coef_bits_latch = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components * 2 *
|
||||
(SAVED_COEFS * sizeof(int)));
|
||||
coef_bits_latch = coef->coef_bits_latch;
|
||||
prev_coef_bits_latch =
|
||||
&coef->coef_bits_latch[cinfo->num_components * SAVED_COEFS];
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* All components' quantization values must already be latched. */
|
||||
if ((qtable = compptr->quant_table) == NULL)
|
||||
return FALSE;
|
||||
/* Verify DC & first 9 AC quantizers are nonzero to avoid zero-divide. */
|
||||
if (qtable->quantval[0] == 0 ||
|
||||
qtable->quantval[Q01_POS] == 0 ||
|
||||
qtable->quantval[Q10_POS] == 0 ||
|
||||
qtable->quantval[Q20_POS] == 0 ||
|
||||
qtable->quantval[Q11_POS] == 0 ||
|
||||
qtable->quantval[Q02_POS] == 0 ||
|
||||
qtable->quantval[Q03_POS] == 0 ||
|
||||
qtable->quantval[Q12_POS] == 0 ||
|
||||
qtable->quantval[Q21_POS] == 0 ||
|
||||
qtable->quantval[Q30_POS] == 0)
|
||||
return FALSE;
|
||||
/* DC values must be at least partly known for all components. */
|
||||
coef_bits = cinfo->coef_bits[ci];
|
||||
prev_coef_bits = cinfo->coef_bits[ci + cinfo->num_components];
|
||||
if (coef_bits[0] < 0)
|
||||
return FALSE;
|
||||
coef_bits_latch[0] = coef_bits[0];
|
||||
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */
|
||||
for (coefi = 1; coefi < SAVED_COEFS; coefi++) {
|
||||
if (cinfo->input_scan_number > 1)
|
||||
prev_coef_bits_latch[coefi] = prev_coef_bits[coefi];
|
||||
else
|
||||
prev_coef_bits_latch[coefi] = -1;
|
||||
coef_bits_latch[coefi] = coef_bits[coefi];
|
||||
if (coef_bits[coefi] != 0)
|
||||
smoothing_useful = TRUE;
|
||||
}
|
||||
coef_bits_latch += SAVED_COEFS;
|
||||
prev_coef_bits_latch += SAVED_COEFS;
|
||||
}
|
||||
|
||||
return smoothing_useful;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Variant of decompress_data for use when doing block smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
decompress_smooth_data(j_decompress_ptr cinfo, _JSAMPIMAGE output_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
JDIMENSION block_num, last_block_column;
|
||||
int ci, block_row, block_rows, access_rows, image_block_row,
|
||||
image_block_rows;
|
||||
JBLOCKARRAY buffer;
|
||||
JBLOCKROW buffer_ptr, prev_prev_block_row, prev_block_row;
|
||||
JBLOCKROW next_block_row, next_next_block_row;
|
||||
_JSAMPARRAY output_ptr;
|
||||
JDIMENSION output_col;
|
||||
jpeg_component_info *compptr;
|
||||
_inverse_DCT_method_ptr inverse_DCT;
|
||||
boolean change_dc;
|
||||
JCOEF *workspace;
|
||||
int *coef_bits;
|
||||
JQUANT_TBL *quanttbl;
|
||||
JLONG Q00, Q01, Q02, Q03 = 0, Q10, Q11, Q12 = 0, Q20, Q21 = 0, Q30 = 0, num;
|
||||
int DC01, DC02, DC03, DC04, DC05, DC06, DC07, DC08, DC09, DC10, DC11, DC12,
|
||||
DC13, DC14, DC15, DC16, DC17, DC18, DC19, DC20, DC21, DC22, DC23, DC24,
|
||||
DC25;
|
||||
int Al, pred;
|
||||
|
||||
/* Keep a local variable to avoid looking it up more than once */
|
||||
workspace = coef->workspace;
|
||||
|
||||
/* Force some input to be done if we are getting ahead of the input. */
|
||||
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
|
||||
!cinfo->inputctl->eoi_reached) {
|
||||
if (cinfo->input_scan_number == cinfo->output_scan_number) {
|
||||
/* If input is working on current scan, we ordinarily want it to
|
||||
* have completed the current row. But if input scan is DC,
|
||||
* we want it to keep two rows ahead so that next two block rows' DC
|
||||
* values are up to date.
|
||||
*/
|
||||
JDIMENSION delta = (cinfo->Ss == 0) ? 2 : 0;
|
||||
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta)
|
||||
break;
|
||||
}
|
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
||||
return JPEG_SUSPENDED;
|
||||
}
|
||||
|
||||
/* OK, output from the virtual arrays. */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Don't bother to IDCT an uninteresting component. */
|
||||
if (!compptr->component_needed)
|
||||
continue;
|
||||
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||
if (cinfo->output_iMCU_row + 1 < last_iMCU_row) {
|
||||
block_rows = compptr->v_samp_factor;
|
||||
access_rows = block_rows * 3; /* this and next two iMCU rows */
|
||||
} else if (cinfo->output_iMCU_row < last_iMCU_row) {
|
||||
block_rows = compptr->v_samp_factor;
|
||||
access_rows = block_rows * 2; /* this and next iMCU row */
|
||||
} else {
|
||||
/* NB: can't use last_row_height here; it is input-side-dependent! */
|
||||
block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||
access_rows = block_rows; /* this iMCU row only */
|
||||
}
|
||||
/* Align the virtual buffer for this component. */
|
||||
if (cinfo->output_iMCU_row > 1) {
|
||||
access_rows += 2 * compptr->v_samp_factor; /* prior two iMCU rows too */
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr)cinfo, coef->whole_image[ci],
|
||||
(cinfo->output_iMCU_row - 2) * compptr->v_samp_factor,
|
||||
(JDIMENSION)access_rows, FALSE);
|
||||
buffer += 2 * compptr->v_samp_factor; /* point to current iMCU row */
|
||||
} else if (cinfo->output_iMCU_row > 0) {
|
||||
access_rows += compptr->v_samp_factor; /* prior iMCU row too */
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr)cinfo, coef->whole_image[ci],
|
||||
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
|
||||
(JDIMENSION)access_rows, FALSE);
|
||||
buffer += compptr->v_samp_factor; /* point to current iMCU row */
|
||||
} else {
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr)cinfo, coef->whole_image[ci],
|
||||
(JDIMENSION)0, (JDIMENSION)access_rows, FALSE);
|
||||
}
|
||||
/* Fetch component-dependent info.
|
||||
* If the current scan is incomplete, then we use the component-dependent
|
||||
* info from the previous scan.
|
||||
*/
|
||||
if (cinfo->output_iMCU_row > cinfo->master->last_good_iMCU_row)
|
||||
coef_bits =
|
||||
coef->coef_bits_latch + ((ci + cinfo->num_components) * SAVED_COEFS);
|
||||
else
|
||||
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
|
||||
|
||||
/* We only do DC interpolation if no AC coefficient data is available. */
|
||||
change_dc =
|
||||
coef_bits[1] == -1 && coef_bits[2] == -1 && coef_bits[3] == -1 &&
|
||||
coef_bits[4] == -1 && coef_bits[5] == -1 && coef_bits[6] == -1 &&
|
||||
coef_bits[7] == -1 && coef_bits[8] == -1 && coef_bits[9] == -1;
|
||||
|
||||
quanttbl = compptr->quant_table;
|
||||
Q00 = quanttbl->quantval[0];
|
||||
Q01 = quanttbl->quantval[Q01_POS];
|
||||
Q10 = quanttbl->quantval[Q10_POS];
|
||||
Q20 = quanttbl->quantval[Q20_POS];
|
||||
Q11 = quanttbl->quantval[Q11_POS];
|
||||
Q02 = quanttbl->quantval[Q02_POS];
|
||||
if (change_dc) {
|
||||
Q03 = quanttbl->quantval[Q03_POS];
|
||||
Q12 = quanttbl->quantval[Q12_POS];
|
||||
Q21 = quanttbl->quantval[Q21_POS];
|
||||
Q30 = quanttbl->quantval[Q30_POS];
|
||||
}
|
||||
inverse_DCT = cinfo->idct->_inverse_DCT[ci];
|
||||
output_ptr = output_buf[ci];
|
||||
/* Loop over all DCT blocks to be processed. */
|
||||
image_block_rows = block_rows * cinfo->total_iMCU_rows;
|
||||
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||
image_block_row = cinfo->output_iMCU_row * block_rows + block_row;
|
||||
buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
|
||||
|
||||
if (image_block_row > 0)
|
||||
prev_block_row =
|
||||
buffer[block_row - 1] + cinfo->master->first_MCU_col[ci];
|
||||
else
|
||||
prev_block_row = buffer_ptr;
|
||||
|
||||
if (image_block_row > 1)
|
||||
prev_prev_block_row =
|
||||
buffer[block_row - 2] + cinfo->master->first_MCU_col[ci];
|
||||
else
|
||||
prev_prev_block_row = prev_block_row;
|
||||
|
||||
if (image_block_row < image_block_rows - 1)
|
||||
next_block_row =
|
||||
buffer[block_row + 1] + cinfo->master->first_MCU_col[ci];
|
||||
else
|
||||
next_block_row = buffer_ptr;
|
||||
|
||||
if (image_block_row < image_block_rows - 2)
|
||||
next_next_block_row =
|
||||
buffer[block_row + 2] + cinfo->master->first_MCU_col[ci];
|
||||
else
|
||||
next_next_block_row = next_block_row;
|
||||
|
||||
/* We fetch the surrounding DC values using a sliding-register approach.
|
||||
* Initialize all 25 here so as to do the right thing on narrow pics.
|
||||
*/
|
||||
DC01 = DC02 = DC03 = DC04 = DC05 = (int)prev_prev_block_row[0][0];
|
||||
DC06 = DC07 = DC08 = DC09 = DC10 = (int)prev_block_row[0][0];
|
||||
DC11 = DC12 = DC13 = DC14 = DC15 = (int)buffer_ptr[0][0];
|
||||
DC16 = DC17 = DC18 = DC19 = DC20 = (int)next_block_row[0][0];
|
||||
DC21 = DC22 = DC23 = DC24 = DC25 = (int)next_next_block_row[0][0];
|
||||
output_col = 0;
|
||||
last_block_column = compptr->width_in_blocks - 1;
|
||||
for (block_num = cinfo->master->first_MCU_col[ci];
|
||||
block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
|
||||
/* Fetch current DCT block into workspace so we can modify it. */
|
||||
jcopy_block_row(buffer_ptr, (JBLOCKROW)workspace, (JDIMENSION)1);
|
||||
/* Update DC values */
|
||||
if (block_num == cinfo->master->first_MCU_col[ci] &&
|
||||
block_num < last_block_column) {
|
||||
DC04 = DC05 = (int)prev_prev_block_row[1][0];
|
||||
DC09 = DC10 = (int)prev_block_row[1][0];
|
||||
DC14 = DC15 = (int)buffer_ptr[1][0];
|
||||
DC19 = DC20 = (int)next_block_row[1][0];
|
||||
DC24 = DC25 = (int)next_next_block_row[1][0];
|
||||
}
|
||||
if (block_num + 1 < last_block_column) {
|
||||
DC05 = (int)prev_prev_block_row[2][0];
|
||||
DC10 = (int)prev_block_row[2][0];
|
||||
DC15 = (int)buffer_ptr[2][0];
|
||||
DC20 = (int)next_block_row[2][0];
|
||||
DC25 = (int)next_next_block_row[2][0];
|
||||
}
|
||||
/* If DC interpolation is enabled, compute coefficient estimates using
|
||||
* a Gaussian-like kernel, keeping the averages of the DC values.
|
||||
*
|
||||
* If DC interpolation is disabled, compute coefficient estimates using
|
||||
* an algorithm similar to the one described in Section K.8 of the JPEG
|
||||
* standard, except applied to a 5x5 window rather than a 3x3 window.
|
||||
*
|
||||
* An estimate is applied only if the coefficient is still zero and is
|
||||
* not known to be fully accurate.
|
||||
*/
|
||||
/* AC01 */
|
||||
if ((Al = coef_bits[1]) != 0 && workspace[1] == 0) {
|
||||
num = Q00 * (change_dc ?
|
||||
(-DC01 - DC02 + DC04 + DC05 - 3 * DC06 + 13 * DC07 -
|
||||
13 * DC09 + 3 * DC10 - 3 * DC11 + 38 * DC12 - 38 * DC14 +
|
||||
3 * DC15 - 3 * DC16 + 13 * DC17 - 13 * DC19 + 3 * DC20 -
|
||||
DC21 - DC22 + DC24 + DC25) :
|
||||
(-7 * DC11 + 50 * DC12 - 50 * DC14 + 7 * DC15));
|
||||
if (num >= 0) {
|
||||
pred = (int)(((Q01 << 7) + num) / (Q01 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
} else {
|
||||
pred = (int)(((Q01 << 7) - num) / (Q01 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[1] = (JCOEF)pred;
|
||||
}
|
||||
/* AC10 */
|
||||
if ((Al = coef_bits[2]) != 0 && workspace[8] == 0) {
|
||||
num = Q00 * (change_dc ?
|
||||
(-DC01 - 3 * DC02 - 3 * DC03 - 3 * DC04 - DC05 - DC06 +
|
||||
13 * DC07 + 38 * DC08 + 13 * DC09 - DC10 + DC16 -
|
||||
13 * DC17 - 38 * DC18 - 13 * DC19 + DC20 + DC21 +
|
||||
3 * DC22 + 3 * DC23 + 3 * DC24 + DC25) :
|
||||
(-7 * DC03 + 50 * DC08 - 50 * DC18 + 7 * DC23));
|
||||
if (num >= 0) {
|
||||
pred = (int)(((Q10 << 7) + num) / (Q10 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
} else {
|
||||
pred = (int)(((Q10 << 7) - num) / (Q10 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[8] = (JCOEF)pred;
|
||||
}
|
||||
/* AC20 */
|
||||
if ((Al = coef_bits[3]) != 0 && workspace[16] == 0) {
|
||||
num = Q00 * (change_dc ?
|
||||
(DC03 + 2 * DC07 + 7 * DC08 + 2 * DC09 - 5 * DC12 - 14 * DC13 -
|
||||
5 * DC14 + 2 * DC17 + 7 * DC18 + 2 * DC19 + DC23) :
|
||||
(-DC03 + 13 * DC08 - 24 * DC13 + 13 * DC18 - DC23));
|
||||
if (num >= 0) {
|
||||
pred = (int)(((Q20 << 7) + num) / (Q20 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
} else {
|
||||
pred = (int)(((Q20 << 7) - num) / (Q20 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[16] = (JCOEF)pred;
|
||||
}
|
||||
/* AC11 */
|
||||
if ((Al = coef_bits[4]) != 0 && workspace[9] == 0) {
|
||||
num = Q00 * (change_dc ?
|
||||
(-DC01 + DC05 + 9 * DC07 - 9 * DC09 - 9 * DC17 +
|
||||
9 * DC19 + DC21 - DC25) :
|
||||
(DC10 + DC16 - 10 * DC17 + 10 * DC19 - DC02 - DC20 + DC22 -
|
||||
DC24 + DC04 - DC06 + 10 * DC07 - 10 * DC09));
|
||||
if (num >= 0) {
|
||||
pred = (int)(((Q11 << 7) + num) / (Q11 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
} else {
|
||||
pred = (int)(((Q11 << 7) - num) / (Q11 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[9] = (JCOEF)pred;
|
||||
}
|
||||
/* AC02 */
|
||||
if ((Al = coef_bits[5]) != 0 && workspace[2] == 0) {
|
||||
num = Q00 * (change_dc ?
|
||||
(2 * DC07 - 5 * DC08 + 2 * DC09 + DC11 + 7 * DC12 - 14 * DC13 +
|
||||
7 * DC14 + DC15 + 2 * DC17 - 5 * DC18 + 2 * DC19) :
|
||||
(-DC11 + 13 * DC12 - 24 * DC13 + 13 * DC14 - DC15));
|
||||
if (num >= 0) {
|
||||
pred = (int)(((Q02 << 7) + num) / (Q02 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
} else {
|
||||
pred = (int)(((Q02 << 7) - num) / (Q02 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[2] = (JCOEF)pred;
|
||||
}
|
||||
if (change_dc) {
|
||||
/* AC03 */
|
||||
if ((Al = coef_bits[6]) != 0 && workspace[3] == 0) {
|
||||
num = Q00 * (DC07 - DC09 + 2 * DC12 - 2 * DC14 + DC17 - DC19);
|
||||
if (num >= 0) {
|
||||
pred = (int)(((Q03 << 7) + num) / (Q03 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
} else {
|
||||
pred = (int)(((Q03 << 7) - num) / (Q03 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[3] = (JCOEF)pred;
|
||||
}
|
||||
/* AC12 */
|
||||
if ((Al = coef_bits[7]) != 0 && workspace[10] == 0) {
|
||||
num = Q00 * (DC07 - 3 * DC08 + DC09 - DC17 + 3 * DC18 - DC19);
|
||||
if (num >= 0) {
|
||||
pred = (int)(((Q12 << 7) + num) / (Q12 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
} else {
|
||||
pred = (int)(((Q12 << 7) - num) / (Q12 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[10] = (JCOEF)pred;
|
||||
}
|
||||
/* AC21 */
|
||||
if ((Al = coef_bits[8]) != 0 && workspace[17] == 0) {
|
||||
num = Q00 * (DC07 - DC09 - 3 * DC12 + 3 * DC14 + DC17 - DC19);
|
||||
if (num >= 0) {
|
||||
pred = (int)(((Q21 << 7) + num) / (Q21 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
} else {
|
||||
pred = (int)(((Q21 << 7) - num) / (Q21 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[17] = (JCOEF)pred;
|
||||
}
|
||||
/* AC30 */
|
||||
if ((Al = coef_bits[9]) != 0 && workspace[24] == 0) {
|
||||
num = Q00 * (DC07 + 2 * DC08 + DC09 - DC17 - 2 * DC18 - DC19);
|
||||
if (num >= 0) {
|
||||
pred = (int)(((Q30 << 7) + num) / (Q30 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
} else {
|
||||
pred = (int)(((Q30 << 7) - num) / (Q30 << 8));
|
||||
if (Al > 0 && pred >= (1 << Al))
|
||||
pred = (1 << Al) - 1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[24] = (JCOEF)pred;
|
||||
}
|
||||
/* coef_bits[0] is non-negative. Otherwise this function would not
|
||||
* be called.
|
||||
*/
|
||||
num = Q00 *
|
||||
(-2 * DC01 - 6 * DC02 - 8 * DC03 - 6 * DC04 - 2 * DC05 -
|
||||
6 * DC06 + 6 * DC07 + 42 * DC08 + 6 * DC09 - 6 * DC10 -
|
||||
8 * DC11 + 42 * DC12 + 152 * DC13 + 42 * DC14 - 8 * DC15 -
|
||||
6 * DC16 + 6 * DC17 + 42 * DC18 + 6 * DC19 - 6 * DC20 -
|
||||
2 * DC21 - 6 * DC22 - 8 * DC23 - 6 * DC24 - 2 * DC25);
|
||||
if (num >= 0) {
|
||||
pred = (int)(((Q00 << 7) + num) / (Q00 << 8));
|
||||
} else {
|
||||
pred = (int)(((Q00 << 7) - num) / (Q00 << 8));
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[0] = (JCOEF)pred;
|
||||
} /* change_dc */
|
||||
|
||||
/* OK, do the IDCT */
|
||||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR)workspace, output_ptr,
|
||||
output_col);
|
||||
/* Advance for next column */
|
||||
DC01 = DC02; DC02 = DC03; DC03 = DC04; DC04 = DC05;
|
||||
DC06 = DC07; DC07 = DC08; DC08 = DC09; DC09 = DC10;
|
||||
DC11 = DC12; DC12 = DC13; DC13 = DC14; DC14 = DC15;
|
||||
DC16 = DC17; DC17 = DC18; DC18 = DC19; DC19 = DC20;
|
||||
DC21 = DC22; DC22 = DC23; DC23 = DC24; DC24 = DC25;
|
||||
buffer_ptr++, prev_block_row++, next_block_row++,
|
||||
prev_prev_block_row++, next_next_block_row++;
|
||||
output_col += compptr->_DCT_scaled_size;
|
||||
}
|
||||
output_ptr += compptr->_DCT_scaled_size;
|
||||
}
|
||||
}
|
||||
|
||||
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
|
||||
return JPEG_ROW_COMPLETED;
|
||||
return JPEG_SCAN_COMPLETED;
|
||||
}
|
||||
|
||||
#endif /* BLOCK_SMOOTHING_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_coef_ptr coef;
|
||||
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
coef = (my_coef_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_coef_controller));
|
||||
cinfo->coef = (struct jpeg_d_coef_controller *)coef;
|
||||
coef->pub.start_input_pass = start_input_pass;
|
||||
coef->pub.start_output_pass = start_output_pass;
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
coef->coef_bits_latch = NULL;
|
||||
#endif
|
||||
|
||||
/* Create the coefficient buffer. */
|
||||
if (need_full_buffer) {
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
/* Allocate a full-image virtual array for each component, */
|
||||
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
||||
/* Note we ask for a pre-zeroed array. */
|
||||
int ci, access_rows;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
access_rows = compptr->v_samp_factor;
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
/* If block smoothing could be used, need a bigger window */
|
||||
if (cinfo->progressive_mode)
|
||||
access_rows *= 5;
|
||||
#endif
|
||||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE,
|
||||
(JDIMENSION)jround_up((long)compptr->width_in_blocks,
|
||||
(long)compptr->h_samp_factor),
|
||||
(JDIMENSION)jround_up((long)compptr->height_in_blocks,
|
||||
(long)compptr->v_samp_factor),
|
||||
(JDIMENSION)access_rows);
|
||||
}
|
||||
coef->pub.consume_data = consume_data;
|
||||
coef->pub._decompress_data = decompress_data;
|
||||
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
/* We only need a single-MCU buffer. */
|
||||
JBLOCKROW buffer;
|
||||
int i;
|
||||
|
||||
buffer = (JBLOCKROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
|
||||
for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
|
||||
coef->MCU_buffer[i] = buffer + i;
|
||||
}
|
||||
coef->pub.consume_data = dummy_consume_data;
|
||||
coef->pub._decompress_data = decompress_onepass;
|
||||
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
|
||||
}
|
||||
|
||||
/* Allocate the workspace buffer */
|
||||
coef->workspace = (JCOEF *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(JCOEF) * DCTSIZE2);
|
||||
}
|
||||
88
thirdparty/libjpeg-turbo/src/jdcoefct.h
vendored
Normal file
88
thirdparty/libjpeg-turbo/src/jdcoefct.h
vendored
Normal file
@@ -0,0 +1,88 @@
|
||||
/*
|
||||
* jdcoefct.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||||
* Copyright (C) 2020, Google, Inc.
|
||||
* Copyright (C) 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED)
|
||||
|
||||
/* Block smoothing is only applicable for progressive JPEG, so: */
|
||||
#ifndef D_PROGRESSIVE_SUPPORTED
|
||||
#undef BLOCK_SMOOTHING_SUPPORTED
|
||||
#endif
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_coef_controller pub; /* public fields */
|
||||
|
||||
/* These variables keep track of the current location of the input side. */
|
||||
/* cinfo->input_iMCU_row is also used for this. */
|
||||
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
|
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||
|
||||
/* The output side's location is represented by cinfo->output_iMCU_row. */
|
||||
|
||||
/* In single-pass modes, it's sufficient to buffer just one MCU.
|
||||
* We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
|
||||
* and let the entropy decoder write into that workspace each time.
|
||||
* In multi-pass modes, this array points to the current MCU's blocks
|
||||
* within the virtual arrays; it is used only by the input side.
|
||||
*/
|
||||
JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
|
||||
|
||||
/* Temporary workspace for one MCU */
|
||||
JCOEF *workspace;
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
/* In multi-pass modes, we need a virtual block array for each component. */
|
||||
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
||||
#endif
|
||||
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
/* When doing block smoothing, we latch coefficient Al values here */
|
||||
int *coef_bits_latch;
|
||||
#define SAVED_COEFS 10 /* we save coef_bits[0..9] */
|
||||
#endif
|
||||
} my_coef_controller;
|
||||
|
||||
typedef my_coef_controller *my_coef_ptr;
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
start_iMCU_row(j_decompress_ptr cinfo)
|
||||
/* Reset within-iMCU-row counters for a new row (input side) */
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||
* But at the bottom of the image, process only what's left.
|
||||
*/
|
||||
if (cinfo->comps_in_scan > 1) {
|
||||
coef->MCU_rows_per_iMCU_row = 1;
|
||||
} else {
|
||||
if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows - 1))
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||
else
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||
}
|
||||
|
||||
coef->MCU_ctr = 0;
|
||||
coef->MCU_vert_offset = 0;
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED) */
|
||||
392
thirdparty/libjpeg-turbo/src/jdcol565.c
vendored
Normal file
392
thirdparty/libjpeg-turbo/src/jdcol565.c
vendored
Normal file
@@ -0,0 +1,392 @@
|
||||
/*
|
||||
* jdcol565.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modifications:
|
||||
* Copyright (C) 2013, Linaro Limited.
|
||||
* Copyright (C) 2014-2015, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains output colorspace conversion routines.
|
||||
*/
|
||||
|
||||
/* This file is included by jdcolor.c */
|
||||
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
ycc_rgb565_convert_internal(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf,
|
||||
int num_rows)
|
||||
{
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register _JSAMPROW outptr;
|
||||
register _JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
register int *Crrtab = cconvert->Cr_r_tab;
|
||||
register int *Cbbtab = cconvert->Cb_b_tab;
|
||||
register JLONG *Crgtab = cconvert->Cr_g_tab;
|
||||
register JLONG *Cbgtab = cconvert->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
JLONG rgb;
|
||||
unsigned int r, g, b;
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
|
||||
if (PACK_NEED_ALIGNMENT(outptr)) {
|
||||
y = *inptr0++;
|
||||
cb = *inptr1++;
|
||||
cr = *inptr2++;
|
||||
r = range_limit[y + Crrtab[cr]];
|
||||
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS))];
|
||||
b = range_limit[y + Cbbtab[cb]];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
outptr += 2;
|
||||
num_cols--;
|
||||
}
|
||||
for (col = 0; col < (num_cols >> 1); col++) {
|
||||
y = *inptr0++;
|
||||
cb = *inptr1++;
|
||||
cr = *inptr2++;
|
||||
r = range_limit[y + Crrtab[cr]];
|
||||
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS))];
|
||||
b = range_limit[y + Cbbtab[cb]];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
|
||||
y = *inptr0++;
|
||||
cb = *inptr1++;
|
||||
cr = *inptr2++;
|
||||
r = range_limit[y + Crrtab[cr]];
|
||||
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS))];
|
||||
b = range_limit[y + Cbbtab[cb]];
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
|
||||
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
if (num_cols & 1) {
|
||||
y = *inptr0;
|
||||
cb = *inptr1;
|
||||
cr = *inptr2;
|
||||
r = range_limit[y + Crrtab[cr]];
|
||||
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS))];
|
||||
b = range_limit[y + Cbbtab[cb]];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
}
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
ycc_rgb565D_convert_internal(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf,
|
||||
int num_rows)
|
||||
{
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register _JSAMPROW outptr;
|
||||
register _JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
register int *Crrtab = cconvert->Cr_r_tab;
|
||||
register int *Cbbtab = cconvert->Cb_b_tab;
|
||||
register JLONG *Crgtab = cconvert->Cr_g_tab;
|
||||
register JLONG *Cbgtab = cconvert->Cb_g_tab;
|
||||
JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK];
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
JLONG rgb;
|
||||
unsigned int r, g, b;
|
||||
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
if (PACK_NEED_ALIGNMENT(outptr)) {
|
||||
y = *inptr0++;
|
||||
cb = *inptr1++;
|
||||
cr = *inptr2++;
|
||||
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)];
|
||||
g = range_limit[DITHER_565_G(y +
|
||||
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS)), d0)];
|
||||
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
outptr += 2;
|
||||
num_cols--;
|
||||
}
|
||||
for (col = 0; col < (num_cols >> 1); col++) {
|
||||
y = *inptr0++;
|
||||
cb = *inptr1++;
|
||||
cr = *inptr2++;
|
||||
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)];
|
||||
g = range_limit[DITHER_565_G(y +
|
||||
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS)), d0)];
|
||||
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
|
||||
y = *inptr0++;
|
||||
cb = *inptr1++;
|
||||
cr = *inptr2++;
|
||||
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)];
|
||||
g = range_limit[DITHER_565_G(y +
|
||||
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS)), d0)];
|
||||
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
|
||||
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
if (num_cols & 1) {
|
||||
y = *inptr0;
|
||||
cb = *inptr1;
|
||||
cr = *inptr2;
|
||||
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)];
|
||||
g = range_limit[DITHER_565_G(y +
|
||||
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS)), d0)];
|
||||
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
}
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
rgb_rgb565_convert_internal(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf,
|
||||
int num_rows)
|
||||
{
|
||||
register _JSAMPROW outptr;
|
||||
register _JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
JLONG rgb;
|
||||
unsigned int r, g, b;
|
||||
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
if (PACK_NEED_ALIGNMENT(outptr)) {
|
||||
r = *inptr0++;
|
||||
g = *inptr1++;
|
||||
b = *inptr2++;
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
outptr += 2;
|
||||
num_cols--;
|
||||
}
|
||||
for (col = 0; col < (num_cols >> 1); col++) {
|
||||
r = *inptr0++;
|
||||
g = *inptr1++;
|
||||
b = *inptr2++;
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
|
||||
r = *inptr0++;
|
||||
g = *inptr1++;
|
||||
b = *inptr2++;
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
|
||||
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
if (num_cols & 1) {
|
||||
r = *inptr0;
|
||||
g = *inptr1;
|
||||
b = *inptr2;
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
rgb_rgb565D_convert_internal(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf,
|
||||
int num_rows)
|
||||
{
|
||||
register _JSAMPROW outptr;
|
||||
register _JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
register _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK];
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
JLONG rgb;
|
||||
unsigned int r, g, b;
|
||||
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
if (PACK_NEED_ALIGNMENT(outptr)) {
|
||||
r = range_limit[DITHER_565_R(*inptr0++, d0)];
|
||||
g = range_limit[DITHER_565_G(*inptr1++, d0)];
|
||||
b = range_limit[DITHER_565_B(*inptr2++, d0)];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
outptr += 2;
|
||||
num_cols--;
|
||||
}
|
||||
for (col = 0; col < (num_cols >> 1); col++) {
|
||||
r = range_limit[DITHER_565_R(*inptr0++, d0)];
|
||||
g = range_limit[DITHER_565_G(*inptr1++, d0)];
|
||||
b = range_limit[DITHER_565_B(*inptr2++, d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
|
||||
r = range_limit[DITHER_565_R(*inptr0++, d0)];
|
||||
g = range_limit[DITHER_565_G(*inptr1++, d0)];
|
||||
b = range_limit[DITHER_565_B(*inptr2++, d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
|
||||
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
if (num_cols & 1) {
|
||||
r = range_limit[DITHER_565_R(*inptr0, d0)];
|
||||
g = range_limit[DITHER_565_G(*inptr1, d0)];
|
||||
b = range_limit[DITHER_565_B(*inptr2, d0)];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
gray_rgb565_convert_internal(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf,
|
||||
int num_rows)
|
||||
{
|
||||
register _JSAMPROW inptr, outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
JLONG rgb;
|
||||
unsigned int g;
|
||||
|
||||
inptr = input_buf[0][input_row++];
|
||||
outptr = *output_buf++;
|
||||
if (PACK_NEED_ALIGNMENT(outptr)) {
|
||||
g = *inptr++;
|
||||
rgb = PACK_SHORT_565(g, g, g);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
outptr += 2;
|
||||
num_cols--;
|
||||
}
|
||||
for (col = 0; col < (num_cols >> 1); col++) {
|
||||
g = *inptr++;
|
||||
rgb = PACK_SHORT_565(g, g, g);
|
||||
g = *inptr++;
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(g, g, g));
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
if (num_cols & 1) {
|
||||
g = *inptr;
|
||||
rgb = PACK_SHORT_565(g, g, g);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
gray_rgb565D_convert_internal(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf,
|
||||
int num_rows)
|
||||
{
|
||||
register _JSAMPROW inptr, outptr;
|
||||
register JDIMENSION col;
|
||||
register _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK];
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
JLONG rgb;
|
||||
unsigned int g;
|
||||
|
||||
inptr = input_buf[0][input_row++];
|
||||
outptr = *output_buf++;
|
||||
if (PACK_NEED_ALIGNMENT(outptr)) {
|
||||
g = *inptr++;
|
||||
g = range_limit[DITHER_565_R(g, d0)];
|
||||
rgb = PACK_SHORT_565(g, g, g);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
outptr += 2;
|
||||
num_cols--;
|
||||
}
|
||||
for (col = 0; col < (num_cols >> 1); col++) {
|
||||
g = *inptr++;
|
||||
g = range_limit[DITHER_565_R(g, d0)];
|
||||
rgb = PACK_SHORT_565(g, g, g);
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
|
||||
g = *inptr++;
|
||||
g = range_limit[DITHER_565_R(g, d0)];
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(g, g, g));
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
if (num_cols & 1) {
|
||||
g = *inptr;
|
||||
g = range_limit[DITHER_565_R(g, d0)];
|
||||
rgb = PACK_SHORT_565(g, g, g);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
}
|
||||
}
|
||||
}
|
||||
145
thirdparty/libjpeg-turbo/src/jdcolext.c
vendored
Normal file
145
thirdparty/libjpeg-turbo/src/jdcolext.c
vendored
Normal file
@@ -0,0 +1,145 @@
|
||||
/*
|
||||
* jdcolext.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2009, 2011, 2015, 2022-2023, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains output colorspace conversion routines.
|
||||
*/
|
||||
|
||||
|
||||
/* This file is included by jdcolor.c */
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the output colorspace.
|
||||
*
|
||||
* Note that we change from noninterleaved, one-plane-per-component format
|
||||
* to interleaved-pixel format. The output buffer is therefore three times
|
||||
* as wide as the input buffer.
|
||||
* A starting row offset is provided only for the input buffer. The caller
|
||||
* can easily adjust the passed output_buf value to accommodate any row
|
||||
* offset required on that side.
|
||||
*/
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
ycc_rgb_convert_internal(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf,
|
||||
int num_rows)
|
||||
{
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register _JSAMPROW outptr;
|
||||
register _JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
register int *Crrtab = cconvert->Cr_r_tab;
|
||||
register int *Cbbtab = cconvert->Cb_b_tab;
|
||||
register JLONG *Crgtab = cconvert->Cr_g_tab;
|
||||
register JLONG *Cbgtab = cconvert->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
y = inptr0[col];
|
||||
cb = inptr1[col];
|
||||
cr = inptr2[col];
|
||||
/* Range-limiting is essential due to noise introduced by DCT losses. */
|
||||
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
|
||||
outptr[RGB_GREEN] = range_limit[y +
|
||||
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS))];
|
||||
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
|
||||
/* Set unused byte to _MAXJSAMPLE so it can be interpreted as an */
|
||||
/* opaque alpha channel value */
|
||||
#ifdef RGB_ALPHA
|
||||
outptr[RGB_ALPHA] = _MAXJSAMPLE;
|
||||
#endif
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert grayscale to RGB: just duplicate the graylevel three times.
|
||||
* This is provided to support applications that don't want to cope
|
||||
* with grayscale as a separate case.
|
||||
*/
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
gray_rgb_convert_internal(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf,
|
||||
int num_rows)
|
||||
{
|
||||
register _JSAMPROW inptr, outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = input_buf[0][input_row++];
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
|
||||
/* Set unused byte to _MAXJSAMPLE so it can be interpreted as an */
|
||||
/* opaque alpha channel value */
|
||||
#ifdef RGB_ALPHA
|
||||
outptr[RGB_ALPHA] = _MAXJSAMPLE;
|
||||
#endif
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert RGB to extended RGB: just swap the order of source pixels
|
||||
*/
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
rgb_rgb_convert_internal(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf,
|
||||
int num_rows)
|
||||
{
|
||||
register _JSAMPROW inptr0, inptr1, inptr2;
|
||||
register _JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr[RGB_RED] = inptr0[col];
|
||||
outptr[RGB_GREEN] = inptr1[col];
|
||||
outptr[RGB_BLUE] = inptr2[col];
|
||||
/* Set unused byte to _MAXJSAMPLE so it can be interpreted as an */
|
||||
/* opaque alpha channel value */
|
||||
#ifdef RGB_ALPHA
|
||||
outptr[RGB_ALPHA] = _MAXJSAMPLE;
|
||||
#endif
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
946
thirdparty/libjpeg-turbo/src/jdcolor.c
vendored
Normal file
946
thirdparty/libjpeg-turbo/src/jdcolor.c
vendored
Normal file
@@ -0,0 +1,946 @@
|
||||
/*
|
||||
* jdcolor.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 2011 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||||
* Copyright (C) 2009, 2011-2012, 2014-2015, 2022, 2024, D. R. Commander.
|
||||
* Copyright (C) 2013, Linaro Limited.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains output colorspace conversion routines.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jsimd.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED)
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_deconverter pub; /* public fields */
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
/* Private state for YCC->RGB conversion */
|
||||
int *Cr_r_tab; /* => table for Cr to R conversion */
|
||||
int *Cb_b_tab; /* => table for Cb to B conversion */
|
||||
JLONG *Cr_g_tab; /* => table for Cr to G conversion */
|
||||
JLONG *Cb_g_tab; /* => table for Cb to G conversion */
|
||||
|
||||
/* Private state for RGB->Y conversion */
|
||||
JLONG *rgb_y_tab; /* => table for RGB to Y conversion */
|
||||
#endif
|
||||
} my_color_deconverter;
|
||||
|
||||
typedef my_color_deconverter *my_cconvert_ptr;
|
||||
|
||||
|
||||
/**************** YCbCr -> RGB conversion: most common case **************/
|
||||
/**************** RGB -> Y conversion: less common case **************/
|
||||
|
||||
/*
|
||||
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
|
||||
* normalized to the range 0.._MAXJSAMPLE rather than -0.5 .. 0.5.
|
||||
* The conversion equations to be implemented are therefore
|
||||
*
|
||||
* R = Y + 1.40200 * Cr
|
||||
* G = Y - 0.34414 * Cb - 0.71414 * Cr
|
||||
* B = Y + 1.77200 * Cb
|
||||
*
|
||||
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
|
||||
*
|
||||
* where Cb and Cr represent the incoming values less _CENTERJSAMPLE.
|
||||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
|
||||
*
|
||||
* To avoid floating-point arithmetic, we represent the fractional constants
|
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
|
||||
* the products by 2^16, with appropriate rounding, to get the correct answer.
|
||||
* Notice that Y, being an integral input, does not contribute any fraction
|
||||
* so it need not participate in the rounding.
|
||||
*
|
||||
* For even more speed, we avoid doing any multiplications in the inner loop
|
||||
* by precalculating the constants times Cb and Cr for all possible values.
|
||||
* For 8-bit samples this is very reasonable (only 256 entries per table);
|
||||
* for 12-bit samples it is still acceptable. It's not very reasonable for
|
||||
* 16-bit samples, but if you want lossless storage you shouldn't be changing
|
||||
* colorspace anyway.
|
||||
* The Cr=>R and Cb=>B values can be rounded to integers in advance; the
|
||||
* values for the G calculation are left scaled up, since we must add them
|
||||
* together before rounding.
|
||||
*/
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define ONE_HALF ((JLONG)1 << (SCALEBITS - 1))
|
||||
#define FIX(x) ((JLONG)((x) * (1L << SCALEBITS) + 0.5))
|
||||
|
||||
/* We allocate one big table for RGB->Y conversion and divide it up into
|
||||
* three parts, instead of doing three alloc_small requests. This lets us
|
||||
* use a single table base address, which can be held in a register in the
|
||||
* inner loops on many machines (more than can hold all three addresses,
|
||||
* anyway).
|
||||
*/
|
||||
|
||||
#define R_Y_OFF 0 /* offset to R => Y section */
|
||||
#define G_Y_OFF (1 * (_MAXJSAMPLE + 1)) /* offset to G => Y section */
|
||||
#define B_Y_OFF (2 * (_MAXJSAMPLE + 1)) /* etc. */
|
||||
#define TABLE_SIZE (3 * (_MAXJSAMPLE + 1))
|
||||
|
||||
|
||||
/* Include inline routines for colorspace extensions */
|
||||
|
||||
#include "jdcolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_PIXELSIZE
|
||||
|
||||
#define RGB_RED EXT_RGB_RED
|
||||
#define RGB_GREEN EXT_RGB_GREEN
|
||||
#define RGB_BLUE EXT_RGB_BLUE
|
||||
#define RGB_PIXELSIZE EXT_RGB_PIXELSIZE
|
||||
#define ycc_rgb_convert_internal ycc_extrgb_convert_internal
|
||||
#define gray_rgb_convert_internal gray_extrgb_convert_internal
|
||||
#define rgb_rgb_convert_internal rgb_extrgb_convert_internal
|
||||
#include "jdcolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef ycc_rgb_convert_internal
|
||||
#undef gray_rgb_convert_internal
|
||||
#undef rgb_rgb_convert_internal
|
||||
|
||||
#define RGB_RED EXT_RGBX_RED
|
||||
#define RGB_GREEN EXT_RGBX_GREEN
|
||||
#define RGB_BLUE EXT_RGBX_BLUE
|
||||
#define RGB_ALPHA 3
|
||||
#define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE
|
||||
#define ycc_rgb_convert_internal ycc_extrgbx_convert_internal
|
||||
#define gray_rgb_convert_internal gray_extrgbx_convert_internal
|
||||
#define rgb_rgb_convert_internal rgb_extrgbx_convert_internal
|
||||
#include "jdcolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_ALPHA
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef ycc_rgb_convert_internal
|
||||
#undef gray_rgb_convert_internal
|
||||
#undef rgb_rgb_convert_internal
|
||||
|
||||
#define RGB_RED EXT_BGR_RED
|
||||
#define RGB_GREEN EXT_BGR_GREEN
|
||||
#define RGB_BLUE EXT_BGR_BLUE
|
||||
#define RGB_PIXELSIZE EXT_BGR_PIXELSIZE
|
||||
#define ycc_rgb_convert_internal ycc_extbgr_convert_internal
|
||||
#define gray_rgb_convert_internal gray_extbgr_convert_internal
|
||||
#define rgb_rgb_convert_internal rgb_extbgr_convert_internal
|
||||
#include "jdcolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef ycc_rgb_convert_internal
|
||||
#undef gray_rgb_convert_internal
|
||||
#undef rgb_rgb_convert_internal
|
||||
|
||||
#define RGB_RED EXT_BGRX_RED
|
||||
#define RGB_GREEN EXT_BGRX_GREEN
|
||||
#define RGB_BLUE EXT_BGRX_BLUE
|
||||
#define RGB_ALPHA 3
|
||||
#define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE
|
||||
#define ycc_rgb_convert_internal ycc_extbgrx_convert_internal
|
||||
#define gray_rgb_convert_internal gray_extbgrx_convert_internal
|
||||
#define rgb_rgb_convert_internal rgb_extbgrx_convert_internal
|
||||
#include "jdcolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_ALPHA
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef ycc_rgb_convert_internal
|
||||
#undef gray_rgb_convert_internal
|
||||
#undef rgb_rgb_convert_internal
|
||||
|
||||
#define RGB_RED EXT_XBGR_RED
|
||||
#define RGB_GREEN EXT_XBGR_GREEN
|
||||
#define RGB_BLUE EXT_XBGR_BLUE
|
||||
#define RGB_ALPHA 0
|
||||
#define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE
|
||||
#define ycc_rgb_convert_internal ycc_extxbgr_convert_internal
|
||||
#define gray_rgb_convert_internal gray_extxbgr_convert_internal
|
||||
#define rgb_rgb_convert_internal rgb_extxbgr_convert_internal
|
||||
#include "jdcolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_ALPHA
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef ycc_rgb_convert_internal
|
||||
#undef gray_rgb_convert_internal
|
||||
#undef rgb_rgb_convert_internal
|
||||
|
||||
#define RGB_RED EXT_XRGB_RED
|
||||
#define RGB_GREEN EXT_XRGB_GREEN
|
||||
#define RGB_BLUE EXT_XRGB_BLUE
|
||||
#define RGB_ALPHA 0
|
||||
#define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE
|
||||
#define ycc_rgb_convert_internal ycc_extxrgb_convert_internal
|
||||
#define gray_rgb_convert_internal gray_extxrgb_convert_internal
|
||||
#define rgb_rgb_convert_internal rgb_extxrgb_convert_internal
|
||||
#include "jdcolext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_ALPHA
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef ycc_rgb_convert_internal
|
||||
#undef gray_rgb_convert_internal
|
||||
#undef rgb_rgb_convert_internal
|
||||
|
||||
|
||||
/*
|
||||
* Initialize tables for YCC->RGB colorspace conversion.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
build_ycc_rgb_table(j_decompress_ptr cinfo)
|
||||
{
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert;
|
||||
int i;
|
||||
JLONG x;
|
||||
SHIFT_TEMPS
|
||||
|
||||
cconvert->Cr_r_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(_MAXJSAMPLE + 1) * sizeof(int));
|
||||
cconvert->Cb_b_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(_MAXJSAMPLE + 1) * sizeof(int));
|
||||
cconvert->Cr_g_tab = (JLONG *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(_MAXJSAMPLE + 1) * sizeof(JLONG));
|
||||
cconvert->Cb_g_tab = (JLONG *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(_MAXJSAMPLE + 1) * sizeof(JLONG));
|
||||
|
||||
for (i = 0, x = -_CENTERJSAMPLE; i <= _MAXJSAMPLE; i++, x++) {
|
||||
/* i is the actual input pixel value, in the range 0.._MAXJSAMPLE */
|
||||
/* The Cb or Cr value we are thinking of is x = i - _CENTERJSAMPLE */
|
||||
/* Cr=>R value is nearest int to 1.40200 * x */
|
||||
cconvert->Cr_r_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cb=>B value is nearest int to 1.77200 * x */
|
||||
cconvert->Cb_b_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cr=>G value is scaled-up -0.71414 * x */
|
||||
cconvert->Cr_g_tab[i] = (-FIX(0.71414)) * x;
|
||||
/* Cb=>G value is scaled-up -0.34414 * x */
|
||||
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||
cconvert->Cb_g_tab[i] = (-FIX(0.34414)) * x + ONE_HALF;
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the output colorspace.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
ycc_rgb_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_EXT_RGB:
|
||||
ycc_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_RGBX:
|
||||
case JCS_EXT_RGBA:
|
||||
ycc_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_BGR:
|
||||
ycc_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_BGRX:
|
||||
case JCS_EXT_BGRA:
|
||||
ycc_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_XBGR:
|
||||
case JCS_EXT_ABGR:
|
||||
ycc_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_XRGB:
|
||||
case JCS_EXT_ARGB:
|
||||
ycc_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
default:
|
||||
ycc_rgb_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**************** Cases other than YCbCr -> RGB **************/
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for RGB->grayscale colorspace conversion.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
build_rgb_y_table(j_decompress_ptr cinfo)
|
||||
{
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert;
|
||||
JLONG *rgb_y_tab;
|
||||
JLONG i;
|
||||
|
||||
/* Allocate and fill in the conversion tables. */
|
||||
cconvert->rgb_y_tab = rgb_y_tab = (JLONG *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(TABLE_SIZE * sizeof(JLONG)));
|
||||
|
||||
for (i = 0; i <= _MAXJSAMPLE; i++) {
|
||||
rgb_y_tab[i + R_Y_OFF] = FIX(0.29900) * i;
|
||||
rgb_y_tab[i + G_Y_OFF] = FIX(0.58700) * i;
|
||||
rgb_y_tab[i + B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert RGB to grayscale.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_gray_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register JLONG *ctab = cconvert->rgb_y_tab;
|
||||
register _JSAMPROW outptr;
|
||||
register _JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = inptr0[col];
|
||||
g = inptr1[col];
|
||||
b = inptr2[col];
|
||||
/* Y */
|
||||
outptr[col] = (_JSAMPLE)((ctab[r + R_Y_OFF] + ctab[g + G_Y_OFF] +
|
||||
ctab[b + B_Y_OFF]) >> SCALEBITS);
|
||||
}
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Color conversion for no colorspace change: just copy the data,
|
||||
* converting from separate-planes to interleaved representation.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
null_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
register _JSAMPROW inptr, inptr0, inptr1, inptr2, inptr3, outptr;
|
||||
register JDIMENSION col;
|
||||
register int num_components = cinfo->num_components;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
int ci;
|
||||
|
||||
if (num_components == 3) {
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
*outptr++ = inptr0[col];
|
||||
*outptr++ = inptr1[col];
|
||||
*outptr++ = inptr2[col];
|
||||
}
|
||||
}
|
||||
} else if (num_components == 4) {
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
inptr3 = input_buf[3][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
*outptr++ = inptr0[col];
|
||||
*outptr++ = inptr1[col];
|
||||
*outptr++ = inptr2[col];
|
||||
*outptr++ = inptr3[col];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
while (--num_rows >= 0) {
|
||||
for (ci = 0; ci < num_components; ci++) {
|
||||
inptr = input_buf[ci][input_row];
|
||||
outptr = *output_buf;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr[ci] = inptr[col];
|
||||
outptr += num_components;
|
||||
}
|
||||
}
|
||||
output_buf++;
|
||||
input_row++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Color conversion for grayscale: just copy the data.
|
||||
* This also works for YCbCr -> grayscale conversion, in which
|
||||
* we just copy the Y (luminance) component and ignore chrominance.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
grayscale_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
_jcopy_sample_rows(input_buf[0], (int)input_row, output_buf, 0, num_rows,
|
||||
cinfo->output_width);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert grayscale to RGB
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
gray_rgb_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_EXT_RGB:
|
||||
gray_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_RGBX:
|
||||
case JCS_EXT_RGBA:
|
||||
gray_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_BGR:
|
||||
gray_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_BGRX:
|
||||
case JCS_EXT_BGRA:
|
||||
gray_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_XBGR:
|
||||
case JCS_EXT_ABGR:
|
||||
gray_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_XRGB:
|
||||
case JCS_EXT_ARGB:
|
||||
gray_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
default:
|
||||
gray_rgb_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert plain RGB to extended RGB
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_rgb_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_EXT_RGB:
|
||||
rgb_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_RGBX:
|
||||
case JCS_EXT_RGBA:
|
||||
rgb_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_BGR:
|
||||
rgb_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_BGRX:
|
||||
case JCS_EXT_BGRA:
|
||||
rgb_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_XBGR:
|
||||
case JCS_EXT_ABGR:
|
||||
rgb_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
case JCS_EXT_XRGB:
|
||||
case JCS_EXT_ARGB:
|
||||
rgb_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
default:
|
||||
rgb_rgb_convert_internal(cinfo, input_buf, input_row, output_buf,
|
||||
num_rows);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Adobe-style YCCK->CMYK conversion.
|
||||
* We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
|
||||
* conversion as above, while passing K (black) unchanged.
|
||||
* We assume build_ycc_rgb_table has been called.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
ycck_cmyk_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register _JSAMPROW outptr;
|
||||
register _JSAMPROW inptr0, inptr1, inptr2, inptr3;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
register int *Crrtab = cconvert->Cr_r_tab;
|
||||
register int *Cbbtab = cconvert->Cb_b_tab;
|
||||
register JLONG *Crgtab = cconvert->Cr_g_tab;
|
||||
register JLONG *Cbgtab = cconvert->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
inptr3 = input_buf[3][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
y = inptr0[col];
|
||||
cb = inptr1[col];
|
||||
cr = inptr2[col];
|
||||
/* Range-limiting is essential due to noise introduced by DCT losses. */
|
||||
outptr[0] = range_limit[_MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
|
||||
outptr[1] = range_limit[_MAXJSAMPLE - (y + /* green */
|
||||
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS)))];
|
||||
outptr[2] = range_limit[_MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
|
||||
/* K passes through unchanged */
|
||||
outptr[3] = inptr3[col];
|
||||
outptr += 4;
|
||||
}
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* RGB565 conversion
|
||||
*/
|
||||
|
||||
#define PACK_SHORT_565_LE(r, g, b) \
|
||||
((((r) << 8) & 0xF800) | (((g) << 3) & 0x7E0) | ((b) >> 3))
|
||||
#define PACK_SHORT_565_BE(r, g, b) \
|
||||
(((r) & 0xF8) | ((g) >> 5) | (((g) << 11) & 0xE000) | (((b) << 5) & 0x1F00))
|
||||
|
||||
#define PACK_TWO_PIXELS_LE(l, r) ((r << 16) | l)
|
||||
#define PACK_TWO_PIXELS_BE(l, r) ((l << 16) | r)
|
||||
|
||||
#define PACK_NEED_ALIGNMENT(ptr) (((size_t)(ptr)) & 3)
|
||||
|
||||
#define WRITE_TWO_ALIGNED_PIXELS(addr, pixels) ((*(int *)(addr)) = pixels)
|
||||
|
||||
#define DITHER_565_R(r, dither) ((r) + ((dither) & 0xFF))
|
||||
#define DITHER_565_G(g, dither) ((g) + (((dither) & 0xFF) >> 1))
|
||||
#define DITHER_565_B(b, dither) ((b) + ((dither) & 0xFF))
|
||||
|
||||
|
||||
/* Declarations for ordered dithering
|
||||
*
|
||||
* We use a 4x4 ordered dither array packed into 32 bits. This array is
|
||||
* sufficient for dithering RGB888 to RGB565.
|
||||
*/
|
||||
|
||||
#define DITHER_MASK 0x3
|
||||
#define DITHER_ROTATE(x) ((((x) & 0xFF) << 24) | (((x) >> 8) & 0x00FFFFFF))
|
||||
static const JLONG dither_matrix[4] = {
|
||||
0x0008020A,
|
||||
0x0C040E06,
|
||||
0x030B0109,
|
||||
0x0F070D05
|
||||
};
|
||||
|
||||
|
||||
static INLINE boolean is_big_endian(void)
|
||||
{
|
||||
int test_value = 1;
|
||||
if (*(char *)&test_value != 1)
|
||||
return TRUE;
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
|
||||
/* Include inline routines for RGB565 conversion */
|
||||
|
||||
#define PACK_SHORT_565 PACK_SHORT_565_LE
|
||||
#define PACK_TWO_PIXELS PACK_TWO_PIXELS_LE
|
||||
#define ycc_rgb565_convert_internal ycc_rgb565_convert_le
|
||||
#define ycc_rgb565D_convert_internal ycc_rgb565D_convert_le
|
||||
#define rgb_rgb565_convert_internal rgb_rgb565_convert_le
|
||||
#define rgb_rgb565D_convert_internal rgb_rgb565D_convert_le
|
||||
#define gray_rgb565_convert_internal gray_rgb565_convert_le
|
||||
#define gray_rgb565D_convert_internal gray_rgb565D_convert_le
|
||||
#include "jdcol565.c"
|
||||
#undef PACK_SHORT_565
|
||||
#undef PACK_TWO_PIXELS
|
||||
#undef ycc_rgb565_convert_internal
|
||||
#undef ycc_rgb565D_convert_internal
|
||||
#undef rgb_rgb565_convert_internal
|
||||
#undef rgb_rgb565D_convert_internal
|
||||
#undef gray_rgb565_convert_internal
|
||||
#undef gray_rgb565D_convert_internal
|
||||
|
||||
#define PACK_SHORT_565 PACK_SHORT_565_BE
|
||||
#define PACK_TWO_PIXELS PACK_TWO_PIXELS_BE
|
||||
#define ycc_rgb565_convert_internal ycc_rgb565_convert_be
|
||||
#define ycc_rgb565D_convert_internal ycc_rgb565D_convert_be
|
||||
#define rgb_rgb565_convert_internal rgb_rgb565_convert_be
|
||||
#define rgb_rgb565D_convert_internal rgb_rgb565D_convert_be
|
||||
#define gray_rgb565_convert_internal gray_rgb565_convert_be
|
||||
#define gray_rgb565D_convert_internal gray_rgb565D_convert_be
|
||||
#include "jdcol565.c"
|
||||
#undef PACK_SHORT_565
|
||||
#undef PACK_TWO_PIXELS
|
||||
#undef ycc_rgb565_convert_internal
|
||||
#undef ycc_rgb565D_convert_internal
|
||||
#undef rgb_rgb565_convert_internal
|
||||
#undef rgb_rgb565D_convert_internal
|
||||
#undef gray_rgb565_convert_internal
|
||||
#undef gray_rgb565D_convert_internal
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
ycc_rgb565_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
if (is_big_endian())
|
||||
ycc_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows);
|
||||
else
|
||||
ycc_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
ycc_rgb565D_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
if (is_big_endian())
|
||||
ycc_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows);
|
||||
else
|
||||
ycc_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_rgb565_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
if (is_big_endian())
|
||||
rgb_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows);
|
||||
else
|
||||
rgb_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_rgb565D_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
if (is_big_endian())
|
||||
rgb_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows);
|
||||
else
|
||||
rgb_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
gray_rgb565_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
if (is_big_endian())
|
||||
gray_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows);
|
||||
else
|
||||
gray_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
gray_rgb565D_convert(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, _JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
if (is_big_endian())
|
||||
gray_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows);
|
||||
else
|
||||
gray_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty method for start_pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_dcolor(j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work needed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for output colorspace conversion.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_color_deconverter(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert;
|
||||
int ci;
|
||||
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE || cinfo->data_precision < 2)
|
||||
#else
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE ||
|
||||
cinfo->data_precision < BITS_IN_JSAMPLE - 3)
|
||||
#endif
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
}
|
||||
|
||||
cconvert = (my_cconvert_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_color_deconverter));
|
||||
cinfo->cconvert = (struct jpeg_color_deconverter *)cconvert;
|
||||
cconvert->pub.start_pass = start_pass_dcolor;
|
||||
|
||||
/* Make sure num_components agrees with jpeg_color_space */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->num_components != 1)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
default: /* JCS_UNKNOWN can be anything */
|
||||
if (cinfo->num_components < 1)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Set out_color_components and conversion method based on requested space.
|
||||
* Also clear the component_needed flags for any unused components,
|
||||
* so that earlier pipeline stages can avoid useless computation.
|
||||
* NOTE: We do not allow any lossy color conversion algorithms in lossless
|
||||
* mode.
|
||||
*/
|
||||
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless &&
|
||||
cinfo->jpeg_color_space != cinfo->out_color_space)
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
cinfo->out_color_components = 1;
|
||||
if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
|
||||
cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
cconvert->pub._color_convert = grayscale_convert;
|
||||
/* For color->grayscale conversion, only the Y (0) component is needed */
|
||||
for (ci = 1; ci < cinfo->num_components; ci++)
|
||||
cinfo->comp_info[ci].component_needed = FALSE;
|
||||
} else if (cinfo->jpeg_color_space == JCS_RGB) {
|
||||
cconvert->pub._color_convert = rgb_gray_convert;
|
||||
build_rgb_y_table(cinfo);
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
case JCS_EXT_RGB:
|
||||
case JCS_EXT_RGBX:
|
||||
case JCS_EXT_BGR:
|
||||
case JCS_EXT_BGRX:
|
||||
case JCS_EXT_XBGR:
|
||||
case JCS_EXT_XRGB:
|
||||
case JCS_EXT_RGBA:
|
||||
case JCS_EXT_BGRA:
|
||||
case JCS_EXT_ABGR:
|
||||
case JCS_EXT_ARGB:
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless && cinfo->jpeg_color_space != JCS_RGB)
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
cinfo->out_color_components = rgb_pixelsize[cinfo->out_color_space];
|
||||
if (cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_ycc_rgb())
|
||||
cconvert->pub._color_convert = jsimd_ycc_rgb_convert;
|
||||
else
|
||||
#endif
|
||||
{
|
||||
cconvert->pub._color_convert = ycc_rgb_convert;
|
||||
build_ycc_rgb_table(cinfo);
|
||||
}
|
||||
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
|
||||
cconvert->pub._color_convert = gray_rgb_convert;
|
||||
} else if (cinfo->jpeg_color_space == JCS_RGB) {
|
||||
if (rgb_red[cinfo->out_color_space] == 0 &&
|
||||
rgb_green[cinfo->out_color_space] == 1 &&
|
||||
rgb_blue[cinfo->out_color_space] == 2 &&
|
||||
rgb_pixelsize[cinfo->out_color_space] == 3)
|
||||
cconvert->pub._color_convert = null_convert;
|
||||
else
|
||||
cconvert->pub._color_convert = rgb_rgb_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_RGB565:
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless)
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
cinfo->out_color_components = 3;
|
||||
if (cinfo->dither_mode == JDITHER_NONE) {
|
||||
if (cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_ycc_rgb565())
|
||||
cconvert->pub._color_convert = jsimd_ycc_rgb565_convert;
|
||||
else
|
||||
#endif
|
||||
{
|
||||
cconvert->pub._color_convert = ycc_rgb565_convert;
|
||||
build_ycc_rgb_table(cinfo);
|
||||
}
|
||||
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
|
||||
cconvert->pub._color_convert = gray_rgb565_convert;
|
||||
} else if (cinfo->jpeg_color_space == JCS_RGB) {
|
||||
cconvert->pub._color_convert = rgb_rgb565_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
} else {
|
||||
/* only ordered dithering is supported */
|
||||
if (cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
cconvert->pub._color_convert = ycc_rgb565D_convert;
|
||||
build_ycc_rgb_table(cinfo);
|
||||
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
|
||||
cconvert->pub._color_convert = gray_rgb565D_convert;
|
||||
} else if (cinfo->jpeg_color_space == JCS_RGB) {
|
||||
cconvert->pub._color_convert = rgb_rgb565D_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
}
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless &&
|
||||
cinfo->jpeg_color_space != cinfo->out_color_space)
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
#endif
|
||||
cinfo->out_color_components = 4;
|
||||
if (cinfo->jpeg_color_space == JCS_YCCK) {
|
||||
cconvert->pub._color_convert = ycck_cmyk_convert;
|
||||
build_ycc_rgb_table(cinfo);
|
||||
} else if (cinfo->jpeg_color_space == JCS_CMYK) {
|
||||
cconvert->pub._color_convert = null_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
default:
|
||||
/* Permit null conversion to same output space */
|
||||
if (cinfo->out_color_space == cinfo->jpeg_color_space) {
|
||||
cinfo->out_color_components = cinfo->num_components;
|
||||
cconvert->pub._color_convert = null_convert;
|
||||
} else /* unsupported non-null conversion */
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
}
|
||||
|
||||
if (cinfo->quantize_colors)
|
||||
cinfo->output_components = 1; /* single colormapped output component */
|
||||
else
|
||||
cinfo->output_components = cinfo->out_color_components;
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED) */
|
||||
221
thirdparty/libjpeg-turbo/src/jdct.h
vendored
Normal file
221
thirdparty/libjpeg-turbo/src/jdct.h
vendored
Normal file
@@ -0,0 +1,221 @@
|
||||
/*
|
||||
* jdct.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2015, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This include file contains common declarations for the forward and
|
||||
* inverse DCT modules. These declarations are private to the DCT managers
|
||||
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
|
||||
* The individual DCT algorithms are kept in separate files to ease
|
||||
* machine-dependent tuning (e.g., assembly coding).
|
||||
*/
|
||||
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
/*
|
||||
* A forward DCT routine is given a pointer to a work area of type DCTELEM[];
|
||||
* the DCT is to be performed in-place in that buffer. Type DCTELEM is int
|
||||
* for 8-bit samples, JLONG for 12-bit samples. (NOTE: Floating-point DCT
|
||||
* implementations use an array of type FAST_FLOAT, instead.)
|
||||
* The DCT inputs are expected to be signed (range +-_CENTERJSAMPLE).
|
||||
* The DCT outputs are returned scaled up by a factor of 8; they therefore
|
||||
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
|
||||
* convention improves accuracy in integer implementations and saves some
|
||||
* work in floating-point ones.
|
||||
* Quantization of the output coefficients is done by jcdctmgr.c. This
|
||||
* step requires an unsigned type and also one with twice the bits.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#ifndef WITH_SIMD
|
||||
typedef int DCTELEM; /* 16 or 32 bits is fine */
|
||||
typedef unsigned int UDCTELEM;
|
||||
typedef unsigned long long UDCTELEM2;
|
||||
#else
|
||||
typedef short DCTELEM; /* prefer 16 bit with SIMD for parellelism */
|
||||
typedef unsigned short UDCTELEM;
|
||||
typedef unsigned int UDCTELEM2;
|
||||
#endif
|
||||
#else
|
||||
typedef JLONG DCTELEM; /* must have 32 bits */
|
||||
typedef unsigned long long UDCTELEM2;
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
|
||||
* to an output sample array. The routine must dequantize the input data as
|
||||
* well as perform the IDCT; for dequantization, it uses the multiplier table
|
||||
* pointed to by compptr->dct_table. The output data is to be placed into the
|
||||
* sample array starting at a specified column. (Any row offset needed will
|
||||
* be applied to the array pointer before it is passed to the IDCT code.)
|
||||
* Note that the number of samples emitted by the IDCT routine is
|
||||
* DCT_scaled_size * DCT_scaled_size.
|
||||
*/
|
||||
|
||||
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
|
||||
|
||||
/*
|
||||
* Each IDCT routine has its own ideas about the best dct_table element type.
|
||||
*/
|
||||
|
||||
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
|
||||
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
|
||||
#else
|
||||
typedef JLONG IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
|
||||
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
|
||||
#endif
|
||||
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
|
||||
|
||||
|
||||
/*
|
||||
* Each IDCT routine is responsible for range-limiting its results and
|
||||
* converting them to unsigned form (0.._MAXJSAMPLE). The raw outputs could
|
||||
* be quite far out of range if the input data is corrupt, so a bulletproof
|
||||
* range-limiting step is required. We use a mask-and-table-lookup method
|
||||
* to do the combined operations quickly. See the comments with
|
||||
* prepare_range_limit_table (in jdmaster.c) for more info.
|
||||
*/
|
||||
|
||||
#define IDCT_range_limit(cinfo) \
|
||||
((_JSAMPLE *)((cinfo)->sample_range_limit) + _CENTERJSAMPLE)
|
||||
|
||||
#define RANGE_MASK (_MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
|
||||
|
||||
|
||||
/* Extern declarations for the forward and inverse DCT routines. */
|
||||
|
||||
EXTERN(void) _jpeg_fdct_islow(DCTELEM *data);
|
||||
EXTERN(void) _jpeg_fdct_ifast(DCTELEM *data);
|
||||
EXTERN(void) jpeg_fdct_float(FAST_FLOAT *data);
|
||||
|
||||
EXTERN(void) _jpeg_idct_islow(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_ifast(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_float(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_7x7(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr, JCOEFPTR coef_block,
|
||||
_JSAMPARRAY output_buf, JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_6x6(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr, JCOEFPTR coef_block,
|
||||
_JSAMPARRAY output_buf, JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_5x5(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr, JCOEFPTR coef_block,
|
||||
_JSAMPARRAY output_buf, JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_4x4(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr, JCOEFPTR coef_block,
|
||||
_JSAMPARRAY output_buf, JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_3x3(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr, JCOEFPTR coef_block,
|
||||
_JSAMPARRAY output_buf, JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_2x2(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr, JCOEFPTR coef_block,
|
||||
_JSAMPARRAY output_buf, JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_1x1(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr, JCOEFPTR coef_block,
|
||||
_JSAMPARRAY output_buf, JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_9x9(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr, JCOEFPTR coef_block,
|
||||
_JSAMPARRAY output_buf, JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_10x10(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_11x11(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_12x12(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_13x13(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_14x14(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_15x15(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
EXTERN(void) _jpeg_idct_16x16(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
|
||||
|
||||
/*
|
||||
* Macros for handling fixed-point arithmetic; these are used by many
|
||||
* but not all of the DCT/IDCT modules.
|
||||
*
|
||||
* All values are expected to be of type JLONG.
|
||||
* Fractional constants are scaled left by CONST_BITS bits.
|
||||
* CONST_BITS is defined within each module using these macros,
|
||||
* and may differ from one module to the next.
|
||||
*/
|
||||
|
||||
#define ONE ((JLONG)1)
|
||||
#define CONST_SCALE (ONE << CONST_BITS)
|
||||
|
||||
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
|
||||
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
|
||||
* thus causing a lot of useless floating-point operations at run time.
|
||||
*/
|
||||
|
||||
#define FIX(x) ((JLONG)((x) * CONST_SCALE + 0.5))
|
||||
|
||||
/* Descale and correctly round a JLONG value that's scaled by N bits.
|
||||
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
|
||||
* the fudge factor is correct for either sign of X.
|
||||
*/
|
||||
|
||||
#define DESCALE(x, n) RIGHT_SHIFT((x) + (ONE << ((n) - 1)), n)
|
||||
|
||||
/* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
|
||||
* This macro is used only when the two inputs will actually be no more than
|
||||
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
|
||||
* full 32x32 multiply. This provides a useful speedup on many machines.
|
||||
* Unfortunately there is no way to specify a 16x16->32 multiply portably
|
||||
* in C, but some C compilers will do the right thing if you provide the
|
||||
* correct combination of casts.
|
||||
*/
|
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
||||
#define MULTIPLY16C16(var, const) (((INT16)(var)) * ((INT16)(const)))
|
||||
#endif
|
||||
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
|
||||
#define MULTIPLY16C16(var, const) (((INT16)(var)) * ((JLONG)(const)))
|
||||
#endif
|
||||
|
||||
#ifndef MULTIPLY16C16 /* default definition */
|
||||
#define MULTIPLY16C16(var, const) ((var) * (const))
|
||||
#endif
|
||||
|
||||
/* Same except both inputs are variables. */
|
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
||||
#define MULTIPLY16V16(var1, var2) (((INT16)(var1)) * ((INT16)(var2)))
|
||||
#endif
|
||||
|
||||
#ifndef MULTIPLY16V16 /* default definition */
|
||||
#define MULTIPLY16V16(var1, var2) ((var1) * (var2))
|
||||
#endif
|
||||
365
thirdparty/libjpeg-turbo/src/jddctmgr.c
vendored
Normal file
365
thirdparty/libjpeg-turbo/src/jddctmgr.c
vendored
Normal file
@@ -0,0 +1,365 @@
|
||||
/*
|
||||
* jddctmgr.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* Modified 2002-2010 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||||
* Copyright (C) 2010, 2015, 2022, D. R. Commander.
|
||||
* Copyright (C) 2013, MIPS Technologies, Inc., California.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains the inverse-DCT management logic.
|
||||
* This code selects a particular IDCT implementation to be used,
|
||||
* and it performs related housekeeping chores. No code in this file
|
||||
* is executed per IDCT step, only during output pass setup.
|
||||
*
|
||||
* Note that the IDCT routines are responsible for performing coefficient
|
||||
* dequantization as well as the IDCT proper. This module sets up the
|
||||
* dequantization multiplier table needed by the IDCT routine.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
#include "jsimddct.h"
|
||||
#include "jpegapicomp.h"
|
||||
|
||||
|
||||
/*
|
||||
* The decompressor input side (jdinput.c) saves away the appropriate
|
||||
* quantization table for each component at the start of the first scan
|
||||
* involving that component. (This is necessary in order to correctly
|
||||
* decode files that reuse Q-table slots.)
|
||||
* When we are ready to make an output pass, the saved Q-table is converted
|
||||
* to a multiplier table that will actually be used by the IDCT routine.
|
||||
* The multiplier table contents are IDCT-method-dependent. To support
|
||||
* application changes in IDCT method between scans, we can remake the
|
||||
* multiplier tables if necessary.
|
||||
* In buffered-image mode, the first output pass may occur before any data
|
||||
* has been seen for some components, and thus before their Q-tables have
|
||||
* been saved away. To handle this case, multiplier tables are preset
|
||||
* to zeroes; the result of the IDCT will be a neutral gray level.
|
||||
*/
|
||||
|
||||
|
||||
/* Private subobject for this module */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_inverse_dct pub; /* public fields */
|
||||
|
||||
/* This array contains the IDCT method code that each multiplier table
|
||||
* is currently set up for, or -1 if it's not yet set up.
|
||||
* The actual multiplier tables are pointed to by dct_table in the
|
||||
* per-component comp_info structures.
|
||||
*/
|
||||
int cur_method[MAX_COMPONENTS];
|
||||
} my_idct_controller;
|
||||
|
||||
typedef my_idct_controller *my_idct_ptr;
|
||||
|
||||
|
||||
/* Allocated multiplier tables: big enough for any supported variant */
|
||||
|
||||
typedef union {
|
||||
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
IFAST_MULT_TYPE ifast_array[DCTSIZE2];
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
FLOAT_MULT_TYPE float_array[DCTSIZE2];
|
||||
#endif
|
||||
} multiplier_table;
|
||||
|
||||
|
||||
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
|
||||
* so be sure to compile that code if either ISLOW or SCALING is requested.
|
||||
*/
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#else
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for an output pass.
|
||||
* Here we select the proper IDCT routine for each component and build
|
||||
* a matching multiplier table.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_idct_ptr idct = (my_idct_ptr)cinfo->idct;
|
||||
int ci, i;
|
||||
jpeg_component_info *compptr;
|
||||
int method = 0;
|
||||
_inverse_DCT_method_ptr method_ptr = NULL;
|
||||
JQUANT_TBL *qtbl;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Select the proper IDCT routine for this component's scaling */
|
||||
switch (compptr->_DCT_scaled_size) {
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
case 1:
|
||||
method_ptr = _jpeg_idct_1x1;
|
||||
method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
||||
break;
|
||||
case 2:
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_idct_2x2())
|
||||
method_ptr = jsimd_idct_2x2;
|
||||
else
|
||||
#endif
|
||||
method_ptr = _jpeg_idct_2x2;
|
||||
method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
||||
break;
|
||||
case 3:
|
||||
method_ptr = _jpeg_idct_3x3;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case 4:
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_idct_4x4())
|
||||
method_ptr = jsimd_idct_4x4;
|
||||
else
|
||||
#endif
|
||||
method_ptr = _jpeg_idct_4x4;
|
||||
method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
||||
break;
|
||||
case 5:
|
||||
method_ptr = _jpeg_idct_5x5;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case 6:
|
||||
#if defined(WITH_SIMD) && defined(__mips__)
|
||||
if (jsimd_can_idct_6x6())
|
||||
method_ptr = jsimd_idct_6x6;
|
||||
else
|
||||
#endif
|
||||
method_ptr = _jpeg_idct_6x6;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case 7:
|
||||
method_ptr = _jpeg_idct_7x7;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
#endif
|
||||
case DCTSIZE:
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_idct_islow())
|
||||
method_ptr = jsimd_idct_islow;
|
||||
else
|
||||
#endif
|
||||
method_ptr = _jpeg_idct_islow;
|
||||
method = JDCT_ISLOW;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_idct_ifast())
|
||||
method_ptr = jsimd_idct_ifast;
|
||||
else
|
||||
#endif
|
||||
method_ptr = _jpeg_idct_ifast;
|
||||
method = JDCT_IFAST;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_idct_float())
|
||||
method_ptr = jsimd_idct_float;
|
||||
else
|
||||
#endif
|
||||
method_ptr = _jpeg_idct_float;
|
||||
method = JDCT_FLOAT;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
case 9:
|
||||
method_ptr = _jpeg_idct_9x9;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case 10:
|
||||
method_ptr = _jpeg_idct_10x10;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case 11:
|
||||
method_ptr = _jpeg_idct_11x11;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case 12:
|
||||
#if defined(WITH_SIMD) && defined(__mips__)
|
||||
if (jsimd_can_idct_12x12())
|
||||
method_ptr = jsimd_idct_12x12;
|
||||
else
|
||||
#endif
|
||||
method_ptr = _jpeg_idct_12x12;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case 13:
|
||||
method_ptr = _jpeg_idct_13x13;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case 14:
|
||||
method_ptr = _jpeg_idct_14x14;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case 15:
|
||||
method_ptr = _jpeg_idct_15x15;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case 16:
|
||||
method_ptr = _jpeg_idct_16x16;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->_DCT_scaled_size);
|
||||
break;
|
||||
}
|
||||
idct->pub._inverse_DCT[ci] = method_ptr;
|
||||
/* Create multiplier table from quant table.
|
||||
* However, we can skip this if the component is uninteresting
|
||||
* or if we already built the table. Also, if no quant table
|
||||
* has yet been saved for the component, we leave the
|
||||
* multiplier table all-zero; we'll be reading zeroes from the
|
||||
* coefficient controller's buffer anyway.
|
||||
*/
|
||||
if (!compptr->component_needed || idct->cur_method[ci] == method)
|
||||
continue;
|
||||
qtbl = compptr->quant_table;
|
||||
if (qtbl == NULL) /* happens if no data yet for component */
|
||||
continue;
|
||||
idct->cur_method[ci] = method;
|
||||
switch (method) {
|
||||
#ifdef PROVIDE_ISLOW_TABLES
|
||||
case JDCT_ISLOW:
|
||||
{
|
||||
/* For LL&M IDCT method, multipliers are equal to raw quantization
|
||||
* coefficients, but are stored as ints to ensure access efficiency.
|
||||
*/
|
||||
ISLOW_MULT_TYPE *ismtbl = (ISLOW_MULT_TYPE *)compptr->dct_table;
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
ismtbl[i] = (ISLOW_MULT_TYPE)qtbl->quantval[i];
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
{
|
||||
/* For AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* For integer operation, the multiplier table is to be scaled by
|
||||
* IFAST_SCALE_BITS.
|
||||
*/
|
||||
IFAST_MULT_TYPE *ifmtbl = (IFAST_MULT_TYPE *)compptr->dct_table;
|
||||
#define CONST_BITS 14
|
||||
static const INT16 aanscales[DCTSIZE2] = {
|
||||
/* precomputed values scaled up by 14 bits */
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
||||
};
|
||||
SHIFT_TEMPS
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
ifmtbl[i] = (IFAST_MULT_TYPE)
|
||||
DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
|
||||
(JLONG)aanscales[i]),
|
||||
CONST_BITS - IFAST_SCALE_BITS);
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
{
|
||||
/* For float AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
*/
|
||||
FLOAT_MULT_TYPE *fmtbl = (FLOAT_MULT_TYPE *)compptr->dct_table;
|
||||
int row, col;
|
||||
static const double aanscalefactor[DCTSIZE] = {
|
||||
1.0, 1.387039845, 1.306562965, 1.175875602,
|
||||
1.0, 0.785694958, 0.541196100, 0.275899379
|
||||
};
|
||||
|
||||
i = 0;
|
||||
for (row = 0; row < DCTSIZE; row++) {
|
||||
for (col = 0; col < DCTSIZE; col++) {
|
||||
fmtbl[i] = (FLOAT_MULT_TYPE)
|
||||
((double)qtbl->quantval[i] *
|
||||
aanscalefactor[row] * aanscalefactor[col]);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize IDCT manager.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_inverse_dct(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_idct_ptr idct;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
idct = (my_idct_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_idct_controller));
|
||||
cinfo->idct = (struct jpeg_inverse_dct *)idct;
|
||||
idct->pub.start_pass = start_pass;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Allocate and pre-zero a multiplier table for each component */
|
||||
compptr->dct_table =
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(multiplier_table));
|
||||
memset(compptr->dct_table, 0, sizeof(multiplier_table));
|
||||
/* Mark multiplier table not yet set up for any method */
|
||||
idct->cur_method[ci] = -1;
|
||||
}
|
||||
}
|
||||
836
thirdparty/libjpeg-turbo/src/jdhuff.c
vendored
Normal file
836
thirdparty/libjpeg-turbo/src/jdhuff.c
vendored
Normal file
@@ -0,0 +1,836 @@
|
||||
/*
|
||||
* jdhuff.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
|
||||
* Copyright (C) 2018, Matthias Räncker.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains Huffman entropy decoding routines.
|
||||
*
|
||||
* Much of the complexity here has to do with supporting input suspension.
|
||||
* If the data source module demands suspension, we want to be able to back
|
||||
* up to the start of the current MCU. To do this, we copy state variables
|
||||
* into local working storage, and update them back to the permanent
|
||||
* storage only upon successful completion of an MCU.
|
||||
*
|
||||
* NOTE: All referenced figures are from
|
||||
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdhuff.h" /* Declarations shared with jd*huff.c */
|
||||
#include "jpegapicomp.h"
|
||||
#include "jstdhuff.c"
|
||||
|
||||
|
||||
/*
|
||||
* Expanded entropy decoder object for Huffman decoding.
|
||||
*
|
||||
* The savable_state subrecord contains fields that change within an MCU,
|
||||
* but must not be updated permanently until we complete the MCU.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
} savable_state;
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_decoder pub; /* public fields */
|
||||
|
||||
/* These fields are loaded into local variables at start of each MCU.
|
||||
* In case of suspension, we exit WITHOUT updating them.
|
||||
*/
|
||||
bitread_perm_state bitstate; /* Bit buffer at start of MCU */
|
||||
savable_state saved; /* Other state at start of MCU */
|
||||
|
||||
/* These fields are NOT loaded into local working state. */
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
|
||||
/* Pointers to derived tables (these workspaces have image lifespan) */
|
||||
d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
|
||||
d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
|
||||
|
||||
/* Precalculated info set up by start_pass for use in decode_mcu: */
|
||||
|
||||
/* Pointers to derived tables to be used for each block within an MCU */
|
||||
d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
||||
d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
||||
/* Whether we care about the DC and AC coefficient values for each block */
|
||||
boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
|
||||
boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
|
||||
} huff_entropy_decoder;
|
||||
|
||||
typedef huff_entropy_decoder *huff_entropy_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a Huffman-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_huff_decoder(j_decompress_ptr cinfo)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
|
||||
int ci, blkn, dctbl, actbl;
|
||||
d_derived_tbl **pdtbl;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
||||
* This ought to be an error condition, but we make it a warning because
|
||||
* there are some baseline files out there with all zeroes in these bytes.
|
||||
*/
|
||||
if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
|
||||
cinfo->Ah != 0 || cinfo->Al != 0)
|
||||
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
dctbl = compptr->dc_tbl_no;
|
||||
actbl = compptr->ac_tbl_no;
|
||||
/* Compute derived values for Huffman tables */
|
||||
/* We may do this more than once for a table, but it's not expensive */
|
||||
pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
|
||||
jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
|
||||
pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
|
||||
jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->saved.last_dc_val[ci] = 0;
|
||||
}
|
||||
|
||||
/* Precalculate decoding info for each block in an MCU of this scan */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Precalculate which table to use for each block */
|
||||
entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
|
||||
entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
|
||||
/* Decide whether we really care about the coefficient values */
|
||||
if (compptr->component_needed) {
|
||||
entropy->dc_needed[blkn] = TRUE;
|
||||
/* we don't need the ACs if producing a 1/8th-size image */
|
||||
entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
|
||||
} else {
|
||||
entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize bitread state variables */
|
||||
entropy->bitstate.bits_left = 0;
|
||||
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
|
||||
entropy->pub.insufficient_data = FALSE;
|
||||
|
||||
/* Initialize restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Compute the derived values for a Huffman table.
|
||||
* This routine also performs some validation checks on the table.
|
||||
*
|
||||
* Note this is also used by jdphuff.c and jdlhuff.c.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
|
||||
d_derived_tbl **pdtbl)
|
||||
{
|
||||
JHUFF_TBL *htbl;
|
||||
d_derived_tbl *dtbl;
|
||||
int p, i, l, si, numsymbols;
|
||||
int lookbits, ctr;
|
||||
char huffsize[257];
|
||||
unsigned int huffcode[257];
|
||||
unsigned int code;
|
||||
|
||||
/* Note that huffsize[] and huffcode[] are filled in code-length order,
|
||||
* paralleling the order of the symbols themselves in htbl->huffval[].
|
||||
*/
|
||||
|
||||
/* Find the input Huffman table */
|
||||
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
||||
htbl =
|
||||
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
||||
if (htbl == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
||||
|
||||
/* Allocate a workspace if we haven't already done so. */
|
||||
if (*pdtbl == NULL)
|
||||
*pdtbl = (d_derived_tbl *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(d_derived_tbl));
|
||||
dtbl = *pdtbl;
|
||||
dtbl->pub = htbl; /* fill in back link */
|
||||
|
||||
/* Figure C.1: make table of Huffman code length for each symbol */
|
||||
|
||||
p = 0;
|
||||
for (l = 1; l <= 16; l++) {
|
||||
i = (int)htbl->bits[l];
|
||||
if (i < 0 || p + i > 256) /* protect against table overrun */
|
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||
while (i--)
|
||||
huffsize[p++] = (char)l;
|
||||
}
|
||||
huffsize[p] = 0;
|
||||
numsymbols = p;
|
||||
|
||||
/* Figure C.2: generate the codes themselves */
|
||||
/* We also validate that the counts represent a legal Huffman code tree. */
|
||||
|
||||
code = 0;
|
||||
si = huffsize[0];
|
||||
p = 0;
|
||||
while (huffsize[p]) {
|
||||
while (((int)huffsize[p]) == si) {
|
||||
huffcode[p++] = code;
|
||||
code++;
|
||||
}
|
||||
/* code is now 1 more than the last code used for codelength si; but
|
||||
* it must still fit in si bits, since no code is allowed to be all ones.
|
||||
*/
|
||||
if (((JLONG)code) >= (((JLONG)1) << si))
|
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||
code <<= 1;
|
||||
si++;
|
||||
}
|
||||
|
||||
/* Figure F.15: generate decoding tables for bit-sequential decoding */
|
||||
|
||||
p = 0;
|
||||
for (l = 1; l <= 16; l++) {
|
||||
if (htbl->bits[l]) {
|
||||
/* valoffset[l] = huffval[] index of 1st symbol of code length l,
|
||||
* minus the minimum code of length l
|
||||
*/
|
||||
dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
|
||||
p += htbl->bits[l];
|
||||
dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
|
||||
} else {
|
||||
dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
|
||||
}
|
||||
}
|
||||
dtbl->valoffset[17] = 0;
|
||||
dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
|
||||
|
||||
/* Compute lookahead tables to speed up decoding.
|
||||
* First we set all the table entries to 0, indicating "too long";
|
||||
* then we iterate through the Huffman codes that are short enough and
|
||||
* fill in all the entries that correspond to bit sequences starting
|
||||
* with that code.
|
||||
*/
|
||||
|
||||
for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
|
||||
dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
|
||||
|
||||
p = 0;
|
||||
for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
|
||||
for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
|
||||
/* l = current code's length, p = its index in huffcode[] & huffval[]. */
|
||||
/* Generate left-justified code followed by all possible bit sequences */
|
||||
lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
|
||||
for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
|
||||
dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
|
||||
lookbits++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Validate symbols as being reasonable.
|
||||
* For AC tables, we make no check, but accept all byte values 0..255.
|
||||
* For DC tables, we require the symbols to be in range 0..15 in lossy mode
|
||||
* and 0..16 in lossless mode. (Tighter bounds could be applied depending on
|
||||
* the data depth and mode, but this is sufficient to ensure safe decoding.)
|
||||
*/
|
||||
if (isDC) {
|
||||
for (i = 0; i < numsymbols; i++) {
|
||||
int sym = htbl->huffval[i];
|
||||
if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
|
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
|
||||
* See jdhuff.h for info about usage.
|
||||
* Note: current values of get_buffer and bits_left are passed as parameters,
|
||||
* but are returned in the corresponding fields of the state struct.
|
||||
*
|
||||
* On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
|
||||
* of get_buffer to be used. (On machines with wider words, an even larger
|
||||
* buffer could be used.) However, on some machines 32-bit shifts are
|
||||
* quite slow and take time proportional to the number of places shifted.
|
||||
* (This is true with most PC compilers, for instance.) In this case it may
|
||||
* be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
|
||||
* average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
|
||||
*/
|
||||
|
||||
#ifdef SLOW_SHIFT_32
|
||||
#define MIN_GET_BITS 15 /* minimum allowable value */
|
||||
#else
|
||||
#define MIN_GET_BITS (BIT_BUF_SIZE - 7)
|
||||
#endif
|
||||
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_fill_bit_buffer(bitread_working_state *state,
|
||||
register bit_buf_type get_buffer, register int bits_left,
|
||||
int nbits)
|
||||
/* Load up the bit buffer to a depth of at least nbits */
|
||||
{
|
||||
/* Copy heavily used state fields into locals (hopefully registers) */
|
||||
register const JOCTET *next_input_byte = state->next_input_byte;
|
||||
register size_t bytes_in_buffer = state->bytes_in_buffer;
|
||||
j_decompress_ptr cinfo = state->cinfo;
|
||||
|
||||
/* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
|
||||
/* (It is assumed that no request will be for more than that many bits.) */
|
||||
/* We fail to do so only if we hit a marker or are forced to suspend. */
|
||||
|
||||
if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
|
||||
while (bits_left < MIN_GET_BITS) {
|
||||
register int c;
|
||||
|
||||
/* Attempt to read a byte */
|
||||
if (bytes_in_buffer == 0) {
|
||||
if (!(*cinfo->src->fill_input_buffer) (cinfo))
|
||||
return FALSE;
|
||||
next_input_byte = cinfo->src->next_input_byte;
|
||||
bytes_in_buffer = cinfo->src->bytes_in_buffer;
|
||||
}
|
||||
bytes_in_buffer--;
|
||||
c = *next_input_byte++;
|
||||
|
||||
/* If it's 0xFF, check and discard stuffed zero byte */
|
||||
if (c == 0xFF) {
|
||||
/* Loop here to discard any padding FF's on terminating marker,
|
||||
* so that we can save a valid unread_marker value. NOTE: we will
|
||||
* accept multiple FF's followed by a 0 as meaning a single FF data
|
||||
* byte. This data pattern is not valid according to the standard.
|
||||
*/
|
||||
do {
|
||||
if (bytes_in_buffer == 0) {
|
||||
if (!(*cinfo->src->fill_input_buffer) (cinfo))
|
||||
return FALSE;
|
||||
next_input_byte = cinfo->src->next_input_byte;
|
||||
bytes_in_buffer = cinfo->src->bytes_in_buffer;
|
||||
}
|
||||
bytes_in_buffer--;
|
||||
c = *next_input_byte++;
|
||||
} while (c == 0xFF);
|
||||
|
||||
if (c == 0) {
|
||||
/* Found FF/00, which represents an FF data byte */
|
||||
c = 0xFF;
|
||||
} else {
|
||||
/* Oops, it's actually a marker indicating end of compressed data.
|
||||
* Save the marker code for later use.
|
||||
* Fine point: it might appear that we should save the marker into
|
||||
* bitread working state, not straight into permanent state. But
|
||||
* once we have hit a marker, we cannot need to suspend within the
|
||||
* current MCU, because we will read no more bytes from the data
|
||||
* source. So it is OK to update permanent state right away.
|
||||
*/
|
||||
cinfo->unread_marker = c;
|
||||
/* See if we need to insert some fake zero bits. */
|
||||
goto no_more_bytes;
|
||||
}
|
||||
}
|
||||
|
||||
/* OK, load c into get_buffer */
|
||||
get_buffer = (get_buffer << 8) | c;
|
||||
bits_left += 8;
|
||||
} /* end while */
|
||||
} else {
|
||||
no_more_bytes:
|
||||
/* We get here if we've read the marker that terminates the compressed
|
||||
* data segment. There should be enough bits in the buffer register
|
||||
* to satisfy the request; if so, no problem.
|
||||
*/
|
||||
if (nbits > bits_left) {
|
||||
/* Uh-oh. Report corrupted data to user and stuff zeroes into
|
||||
* the data stream, so that we can produce some kind of image.
|
||||
* We use a nonvolatile flag to ensure that only one warning message
|
||||
* appears per data segment.
|
||||
*/
|
||||
if (!cinfo->entropy->insufficient_data) {
|
||||
WARNMS(cinfo, JWRN_HIT_MARKER);
|
||||
cinfo->entropy->insufficient_data = TRUE;
|
||||
}
|
||||
/* Fill the buffer with zero bits */
|
||||
get_buffer <<= MIN_GET_BITS - bits_left;
|
||||
bits_left = MIN_GET_BITS;
|
||||
}
|
||||
}
|
||||
|
||||
/* Unload the local registers */
|
||||
state->next_input_byte = next_input_byte;
|
||||
state->bytes_in_buffer = bytes_in_buffer;
|
||||
state->get_buffer = get_buffer;
|
||||
state->bits_left = bits_left;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/* Macro version of the above, which performs much better but does not
|
||||
handle markers. We have to hand off any blocks with markers to the
|
||||
slower routines. */
|
||||
|
||||
#define GET_BYTE { \
|
||||
register int c0, c1; \
|
||||
c0 = *buffer++; \
|
||||
c1 = *buffer; \
|
||||
/* Pre-execute most common case */ \
|
||||
get_buffer = (get_buffer << 8) | c0; \
|
||||
bits_left += 8; \
|
||||
if (c0 == 0xFF) { \
|
||||
/* Pre-execute case of FF/00, which represents an FF data byte */ \
|
||||
buffer++; \
|
||||
if (c1 != 0) { \
|
||||
/* Oops, it's actually a marker indicating end of compressed data. */ \
|
||||
cinfo->unread_marker = c1; \
|
||||
/* Back out pre-execution and fill the buffer with zero bits */ \
|
||||
buffer -= 2; \
|
||||
get_buffer &= ~0xFF; \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
|
||||
|
||||
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
|
||||
#define FILL_BIT_BUFFER_FAST \
|
||||
if (bits_left <= 16) { \
|
||||
GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
|
||||
#define FILL_BIT_BUFFER_FAST \
|
||||
if (bits_left <= 16) { \
|
||||
GET_BYTE GET_BYTE \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Out-of-line code for Huffman code decoding.
|
||||
* See jdhuff.h for info about usage.
|
||||
*/
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_huff_decode(bitread_working_state *state,
|
||||
register bit_buf_type get_buffer, register int bits_left,
|
||||
d_derived_tbl *htbl, int min_bits)
|
||||
{
|
||||
register int l = min_bits;
|
||||
register JLONG code;
|
||||
|
||||
/* HUFF_DECODE has determined that the code is at least min_bits */
|
||||
/* bits long, so fetch that many bits in one swoop. */
|
||||
|
||||
CHECK_BIT_BUFFER(*state, l, return -1);
|
||||
code = GET_BITS(l);
|
||||
|
||||
/* Collect the rest of the Huffman code one bit at a time. */
|
||||
/* This is per Figure F.16. */
|
||||
|
||||
while (code > htbl->maxcode[l]) {
|
||||
code <<= 1;
|
||||
CHECK_BIT_BUFFER(*state, 1, return -1);
|
||||
code |= GET_BITS(1);
|
||||
l++;
|
||||
}
|
||||
|
||||
/* Unload the local registers */
|
||||
state->get_buffer = get_buffer;
|
||||
state->bits_left = bits_left;
|
||||
|
||||
/* With garbage input we may reach the sentinel value l = 17. */
|
||||
|
||||
if (l > 16) {
|
||||
WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
|
||||
return 0; /* fake a zero as the safest result */
|
||||
}
|
||||
|
||||
return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Figure F.12: extend sign bit.
|
||||
* On some machines, a shift and add will be faster than a table lookup.
|
||||
*/
|
||||
|
||||
#define AVOID_TABLES
|
||||
#ifdef AVOID_TABLES
|
||||
|
||||
#define NEG_1 ((unsigned int)-1)
|
||||
#define HUFF_EXTEND(x, s) \
|
||||
((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
|
||||
|
||||
#else
|
||||
|
||||
#define HUFF_EXTEND(x, s) \
|
||||
((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
|
||||
|
||||
static const int extend_test[16] = { /* entry n is 2**(n-1) */
|
||||
0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
|
||||
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
|
||||
};
|
||||
|
||||
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
|
||||
0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
|
||||
((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
|
||||
((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
|
||||
((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
|
||||
};
|
||||
|
||||
#endif /* AVOID_TABLES */
|
||||
|
||||
|
||||
/*
|
||||
* Check for a restart marker & resynchronize decoder.
|
||||
* Returns FALSE if must suspend.
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
process_restart(j_decompress_ptr cinfo)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
|
||||
int ci;
|
||||
|
||||
/* Throw away any unused bits remaining in bit buffer; */
|
||||
/* include any full bytes in next_marker's count of discarded bytes */
|
||||
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
|
||||
entropy->bitstate.bits_left = 0;
|
||||
|
||||
/* Advance past the RSTn marker */
|
||||
if (!(*cinfo->marker->read_restart_marker) (cinfo))
|
||||
return FALSE;
|
||||
|
||||
/* Re-initialize DC predictions to 0 */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
||||
entropy->saved.last_dc_val[ci] = 0;
|
||||
|
||||
/* Reset restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
|
||||
/* Reset out-of-data flag, unless read_restart_marker left us smack up
|
||||
* against a marker. In that case we will end up treating the next data
|
||||
* segment as empty, and we can avoid producing bogus output pixels by
|
||||
* leaving the flag set.
|
||||
*/
|
||||
if (cinfo->unread_marker == 0)
|
||||
entropy->pub.insufficient_data = FALSE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
#if defined(__has_feature)
|
||||
#if __has_feature(undefined_behavior_sanitizer)
|
||||
__attribute__((no_sanitize("signed-integer-overflow"),
|
||||
no_sanitize("unsigned-integer-overflow")))
|
||||
#endif
|
||||
#endif
|
||||
LOCAL(boolean)
|
||||
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
|
||||
BITREAD_STATE_VARS;
|
||||
int blkn;
|
||||
savable_state state;
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
/* Load up working state */
|
||||
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
|
||||
state = entropy->saved;
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
|
||||
d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
|
||||
d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
|
||||
register int s, k, r;
|
||||
|
||||
/* Decode a single block's worth of coefficients */
|
||||
|
||||
/* Section F.2.2.1: decode the DC coefficient difference */
|
||||
HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
|
||||
if (s) {
|
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
||||
r = GET_BITS(s);
|
||||
s = HUFF_EXTEND(r, s);
|
||||
}
|
||||
|
||||
if (entropy->dc_needed[blkn]) {
|
||||
/* Convert DC difference to actual value, update last_dc_val */
|
||||
int ci = cinfo->MCU_membership[blkn];
|
||||
/* Certain malformed JPEG images produce repeated DC coefficient
|
||||
* differences of 2047 or -2047, which causes state.last_dc_val[ci] to
|
||||
* grow until it overflows or underflows a 32-bit signed integer. This
|
||||
* behavior is, to the best of our understanding, innocuous, and it is
|
||||
* unclear how to work around it without potentially affecting
|
||||
* performance. Thus, we (hopefully temporarily) suppress UBSan integer
|
||||
* overflow errors for this function and decode_mcu_fast().
|
||||
*/
|
||||
s += state.last_dc_val[ci];
|
||||
state.last_dc_val[ci] = s;
|
||||
if (block) {
|
||||
/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
|
||||
(*block)[0] = (JCOEF)s;
|
||||
}
|
||||
}
|
||||
|
||||
if (entropy->ac_needed[blkn] && block) {
|
||||
|
||||
/* Section F.2.2.2: decode the AC coefficients */
|
||||
/* Since zeroes are skipped, output area must be cleared beforehand */
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
|
||||
|
||||
r = s >> 4;
|
||||
s &= 15;
|
||||
|
||||
if (s) {
|
||||
k += r;
|
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
||||
r = GET_BITS(s);
|
||||
s = HUFF_EXTEND(r, s);
|
||||
/* Output coefficient in natural (dezigzagged) order.
|
||||
* Note: the extra entries in jpeg_natural_order[] will save us
|
||||
* if k >= DCTSIZE2, which could happen if the data is corrupted.
|
||||
*/
|
||||
(*block)[jpeg_natural_order[k]] = (JCOEF)s;
|
||||
} else {
|
||||
if (r != 15)
|
||||
break;
|
||||
k += 15;
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
|
||||
/* Section F.2.2.2: decode the AC coefficients */
|
||||
/* In this path we just discard the values */
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
|
||||
|
||||
r = s >> 4;
|
||||
s &= 15;
|
||||
|
||||
if (s) {
|
||||
k += r;
|
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
||||
DROP_BITS(s);
|
||||
} else {
|
||||
if (r != 15)
|
||||
break;
|
||||
k += 15;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Completed MCU, so update state */
|
||||
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
|
||||
entropy->saved = state;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
#if defined(__has_feature)
|
||||
#if __has_feature(undefined_behavior_sanitizer)
|
||||
__attribute__((no_sanitize("signed-integer-overflow"),
|
||||
no_sanitize("unsigned-integer-overflow")))
|
||||
#endif
|
||||
#endif
|
||||
LOCAL(boolean)
|
||||
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
|
||||
BITREAD_STATE_VARS;
|
||||
JOCTET *buffer;
|
||||
int blkn;
|
||||
savable_state state;
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
/* Load up working state */
|
||||
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
|
||||
buffer = (JOCTET *)br_state.next_input_byte;
|
||||
state = entropy->saved;
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
|
||||
d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
|
||||
d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
|
||||
register int s, k, r, l;
|
||||
|
||||
HUFF_DECODE_FAST(s, l, dctbl);
|
||||
if (s) {
|
||||
FILL_BIT_BUFFER_FAST
|
||||
r = GET_BITS(s);
|
||||
s = HUFF_EXTEND(r, s);
|
||||
}
|
||||
|
||||
if (entropy->dc_needed[blkn]) {
|
||||
int ci = cinfo->MCU_membership[blkn];
|
||||
/* Refer to the comment in decode_mcu_slow() regarding the supression of
|
||||
* a UBSan integer overflow error in this line of code.
|
||||
*/
|
||||
s += state.last_dc_val[ci];
|
||||
state.last_dc_val[ci] = s;
|
||||
if (block)
|
||||
(*block)[0] = (JCOEF)s;
|
||||
}
|
||||
|
||||
if (entropy->ac_needed[blkn] && block) {
|
||||
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
HUFF_DECODE_FAST(s, l, actbl);
|
||||
r = s >> 4;
|
||||
s &= 15;
|
||||
|
||||
if (s) {
|
||||
k += r;
|
||||
FILL_BIT_BUFFER_FAST
|
||||
r = GET_BITS(s);
|
||||
s = HUFF_EXTEND(r, s);
|
||||
(*block)[jpeg_natural_order[k]] = (JCOEF)s;
|
||||
} else {
|
||||
if (r != 15) break;
|
||||
k += 15;
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
HUFF_DECODE_FAST(s, l, actbl);
|
||||
r = s >> 4;
|
||||
s &= 15;
|
||||
|
||||
if (s) {
|
||||
k += r;
|
||||
FILL_BIT_BUFFER_FAST
|
||||
DROP_BITS(s);
|
||||
} else {
|
||||
if (r != 15) break;
|
||||
k += 15;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (cinfo->unread_marker != 0) {
|
||||
cinfo->unread_marker = 0;
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
|
||||
br_state.next_input_byte = buffer;
|
||||
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
|
||||
entropy->saved = state;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decode and return one MCU's worth of Huffman-compressed coefficients.
|
||||
* The coefficients are reordered from zigzag order into natural array order,
|
||||
* but are not dequantized.
|
||||
*
|
||||
* The i'th block of the MCU is stored into the block pointed to by
|
||||
* MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
|
||||
* (Wholesale zeroing is usually a little faster than retail...)
|
||||
*
|
||||
* Returns FALSE if data source requested suspension. In that case no
|
||||
* changes have been made to permanent state. (Exception: some output
|
||||
* coefficients may already have been assigned. This is harmless for
|
||||
* this module, since we'll just re-assign them on the next call.)
|
||||
*/
|
||||
|
||||
#define BUFSIZE (DCTSIZE2 * 8)
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
|
||||
int usefast = 1;
|
||||
|
||||
/* Process restart marker if needed; may have to suspend */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (!process_restart(cinfo))
|
||||
return FALSE;
|
||||
usefast = 0;
|
||||
}
|
||||
|
||||
if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
|
||||
cinfo->unread_marker != 0)
|
||||
usefast = 0;
|
||||
|
||||
/* If we've run out of data, just leave the MCU set to zeroes.
|
||||
* This way, we return uniform gray for the remainder of the segment.
|
||||
*/
|
||||
if (!entropy->pub.insufficient_data) {
|
||||
|
||||
if (usefast) {
|
||||
if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
|
||||
} else {
|
||||
use_slow:
|
||||
if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */
|
||||
if (cinfo->restart_interval)
|
||||
entropy->restarts_to_go--;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for Huffman entropy decoding.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_huff_decoder(j_decompress_ptr cinfo)
|
||||
{
|
||||
huff_entropy_ptr entropy;
|
||||
int i;
|
||||
|
||||
/* Motion JPEG frames typically do not include the Huffman tables if they
|
||||
are the default tables. Thus, if the tables are not set by the time
|
||||
the Huffman decoder is initialized (usually within the body of
|
||||
jpeg_start_decompress()), we set them to default values. */
|
||||
std_huff_tables((j_common_ptr)cinfo);
|
||||
|
||||
entropy = (huff_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(huff_entropy_decoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
|
||||
entropy->pub.start_pass = start_pass_huff_decoder;
|
||||
entropy->pub.decode_mcu = decode_mcu;
|
||||
|
||||
/* Mark tables unallocated */
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
||||
}
|
||||
}
|
||||
250
thirdparty/libjpeg-turbo/src/jdhuff.h
vendored
Normal file
250
thirdparty/libjpeg-turbo/src/jdhuff.h
vendored
Normal file
@@ -0,0 +1,250 @@
|
||||
/*
|
||||
* jdhuff.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2010-2011, 2015-2016, 2021, D. R. Commander.
|
||||
* Copyright (C) 2018, Matthias Räncker.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains declarations for Huffman entropy decoding routines
|
||||
* that are shared between the sequential decoder (jdhuff.c), the progressive
|
||||
* decoder (jdphuff.c), and the lossless decoder (jdlhuff.c). No other modules
|
||||
* need to see these.
|
||||
*/
|
||||
|
||||
#include "jconfigint.h"
|
||||
|
||||
|
||||
/* Derived data constructed for each Huffman table */
|
||||
|
||||
#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
|
||||
|
||||
typedef struct {
|
||||
/* Basic tables: (element [0] of each array is unused) */
|
||||
JLONG maxcode[18]; /* largest code of length k (-1 if none) */
|
||||
/* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
|
||||
JLONG valoffset[18]; /* huffval[] offset for codes of length k */
|
||||
/* valoffset[k] = huffval[] index of 1st symbol of code length k, less
|
||||
* the smallest code of length k; so given a code of length k, the
|
||||
* corresponding symbol is huffval[code + valoffset[k]]
|
||||
*/
|
||||
|
||||
/* Link to public Huffman table (needed only in jpeg_huff_decode) */
|
||||
JHUFF_TBL *pub;
|
||||
|
||||
/* Lookahead table: indexed by the next HUFF_LOOKAHEAD bits of
|
||||
* the input data stream. If the next Huffman code is no more
|
||||
* than HUFF_LOOKAHEAD bits long, we can obtain its length and
|
||||
* the corresponding symbol directly from this tables.
|
||||
*
|
||||
* The lower 8 bits of each table entry contain the number of
|
||||
* bits in the corresponding Huffman code, or HUFF_LOOKAHEAD + 1
|
||||
* if too long. The next 8 bits of each entry contain the
|
||||
* symbol.
|
||||
*/
|
||||
int lookup[1 << HUFF_LOOKAHEAD];
|
||||
} d_derived_tbl;
|
||||
|
||||
/* Expand a Huffman table definition into the derived format */
|
||||
EXTERN(void) jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC,
|
||||
int tblno, d_derived_tbl **pdtbl);
|
||||
|
||||
|
||||
/*
|
||||
* Fetching the next N bits from the input stream is a time-critical operation
|
||||
* for the Huffman decoders. We implement it with a combination of inline
|
||||
* macros and out-of-line subroutines. Note that N (the number of bits
|
||||
* demanded at one time) never exceeds 15 for JPEG use.
|
||||
*
|
||||
* We read source bytes into get_buffer and dole out bits as needed.
|
||||
* If get_buffer already contains enough bits, they are fetched in-line
|
||||
* by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
|
||||
* bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
|
||||
* as full as possible (not just to the number of bits needed; this
|
||||
* prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
|
||||
* Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
|
||||
* On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
|
||||
* at least the requested number of bits --- dummy zeroes are inserted if
|
||||
* necessary.
|
||||
*/
|
||||
|
||||
#if !defined(_WIN32) && !defined(SIZEOF_SIZE_T)
|
||||
#error Cannot determine word size
|
||||
#endif
|
||||
|
||||
#if SIZEOF_SIZE_T == 8 || defined(_WIN64)
|
||||
|
||||
typedef size_t bit_buf_type; /* type of bit-extraction buffer */
|
||||
#define BIT_BUF_SIZE 64 /* size of buffer in bits */
|
||||
|
||||
#elif defined(__x86_64__) && defined(__ILP32__)
|
||||
|
||||
typedef unsigned long long bit_buf_type; /* type of bit-extraction buffer */
|
||||
#define BIT_BUF_SIZE 64 /* size of buffer in bits */
|
||||
|
||||
#else
|
||||
|
||||
typedef unsigned long bit_buf_type; /* type of bit-extraction buffer */
|
||||
#define BIT_BUF_SIZE 32 /* size of buffer in bits */
|
||||
|
||||
#endif
|
||||
|
||||
/* If long is > 32 bits on your machine, and shifting/masking longs is
|
||||
* reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
|
||||
* appropriately should be a win. Unfortunately we can't define the size
|
||||
* with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
|
||||
* because not all machines measure sizeof in 8-bit bytes.
|
||||
*/
|
||||
|
||||
typedef struct { /* Bitreading state saved across MCUs */
|
||||
bit_buf_type get_buffer; /* current bit-extraction buffer */
|
||||
int bits_left; /* # of unused bits in it */
|
||||
} bitread_perm_state;
|
||||
|
||||
typedef struct { /* Bitreading working state within an MCU */
|
||||
/* Current data source location */
|
||||
/* We need a copy, rather than munging the original, in case of suspension */
|
||||
const JOCTET *next_input_byte; /* => next byte to read from source */
|
||||
size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
|
||||
/* Bit input buffer --- note these values are kept in register variables,
|
||||
* not in this struct, inside the inner loops.
|
||||
*/
|
||||
bit_buf_type get_buffer; /* current bit-extraction buffer */
|
||||
int bits_left; /* # of unused bits in it */
|
||||
/* Pointer needed by jpeg_fill_bit_buffer. */
|
||||
j_decompress_ptr cinfo; /* back link to decompress master record */
|
||||
} bitread_working_state;
|
||||
|
||||
/* Macros to declare and load/save bitread local variables. */
|
||||
#define BITREAD_STATE_VARS \
|
||||
register bit_buf_type get_buffer; \
|
||||
register int bits_left; \
|
||||
bitread_working_state br_state
|
||||
|
||||
#define BITREAD_LOAD_STATE(cinfop, permstate) \
|
||||
br_state.cinfo = cinfop; \
|
||||
br_state.next_input_byte = cinfop->src->next_input_byte; \
|
||||
br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
|
||||
get_buffer = permstate.get_buffer; \
|
||||
bits_left = permstate.bits_left;
|
||||
|
||||
#define BITREAD_SAVE_STATE(cinfop, permstate) \
|
||||
cinfop->src->next_input_byte = br_state.next_input_byte; \
|
||||
cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
|
||||
permstate.get_buffer = get_buffer; \
|
||||
permstate.bits_left = bits_left
|
||||
|
||||
/*
|
||||
* These macros provide the in-line portion of bit fetching.
|
||||
* Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
|
||||
* before using GET_BITS, PEEK_BITS, or DROP_BITS.
|
||||
* The variables get_buffer and bits_left are assumed to be locals,
|
||||
* but the state struct might not be (jpeg_huff_decode needs this).
|
||||
* CHECK_BIT_BUFFER(state, n, action);
|
||||
* Ensure there are N bits in get_buffer; if suspend, take action.
|
||||
* val = GET_BITS(n);
|
||||
* Fetch next N bits.
|
||||
* val = PEEK_BITS(n);
|
||||
* Fetch next N bits without removing them from the buffer.
|
||||
* DROP_BITS(n);
|
||||
* Discard next N bits.
|
||||
* The value N should be a simple variable, not an expression, because it
|
||||
* is evaluated multiple times.
|
||||
*/
|
||||
|
||||
#define CHECK_BIT_BUFFER(state, nbits, action) { \
|
||||
if (bits_left < (nbits)) { \
|
||||
if (!jpeg_fill_bit_buffer(&(state), get_buffer, bits_left, nbits)) \
|
||||
{ action; } \
|
||||
get_buffer = (state).get_buffer; bits_left = (state).bits_left; \
|
||||
} \
|
||||
}
|
||||
|
||||
#define GET_BITS(nbits) \
|
||||
(((int)(get_buffer >> (bits_left -= (nbits)))) & ((1 << (nbits)) - 1))
|
||||
|
||||
#define PEEK_BITS(nbits) \
|
||||
(((int)(get_buffer >> (bits_left - (nbits)))) & ((1 << (nbits)) - 1))
|
||||
|
||||
#define DROP_BITS(nbits) \
|
||||
(bits_left -= (nbits))
|
||||
|
||||
/* Load up the bit buffer to a depth of at least nbits */
|
||||
EXTERN(boolean) jpeg_fill_bit_buffer(bitread_working_state *state,
|
||||
register bit_buf_type get_buffer,
|
||||
register int bits_left, int nbits);
|
||||
|
||||
|
||||
/*
|
||||
* Code for extracting next Huffman-coded symbol from input bit stream.
|
||||
* Again, this is time-critical and we make the main paths be macros.
|
||||
*
|
||||
* We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
|
||||
* without looping. Usually, more than 95% of the Huffman codes will be 8
|
||||
* or fewer bits long. The few overlength codes are handled with a loop,
|
||||
* which need not be inline code.
|
||||
*
|
||||
* Notes about the HUFF_DECODE macro:
|
||||
* 1. Near the end of the data segment, we may fail to get enough bits
|
||||
* for a lookahead. In that case, we do it the hard way.
|
||||
* 2. If the lookahead table contains no entry, the next code must be
|
||||
* more than HUFF_LOOKAHEAD bits long.
|
||||
* 3. jpeg_huff_decode returns -1 if forced to suspend.
|
||||
*/
|
||||
|
||||
#define HUFF_DECODE(result, state, htbl, failaction, slowlabel) { \
|
||||
register int nb, look; \
|
||||
if (bits_left < HUFF_LOOKAHEAD) { \
|
||||
if (!jpeg_fill_bit_buffer(&state, get_buffer, bits_left, 0)) \
|
||||
{ failaction; } \
|
||||
get_buffer = state.get_buffer; bits_left = state.bits_left; \
|
||||
if (bits_left < HUFF_LOOKAHEAD) { \
|
||||
nb = 1; goto slowlabel; \
|
||||
} \
|
||||
} \
|
||||
look = PEEK_BITS(HUFF_LOOKAHEAD); \
|
||||
if ((nb = (htbl->lookup[look] >> HUFF_LOOKAHEAD)) <= HUFF_LOOKAHEAD) { \
|
||||
DROP_BITS(nb); \
|
||||
result = htbl->lookup[look] & ((1 << HUFF_LOOKAHEAD) - 1); \
|
||||
} else { \
|
||||
slowlabel: \
|
||||
if ((result = \
|
||||
jpeg_huff_decode(&state, get_buffer, bits_left, htbl, nb)) < 0) \
|
||||
{ failaction; } \
|
||||
get_buffer = state.get_buffer; bits_left = state.bits_left; \
|
||||
} \
|
||||
}
|
||||
|
||||
#define HUFF_DECODE_FAST(s, nb, htbl) \
|
||||
FILL_BIT_BUFFER_FAST; \
|
||||
s = PEEK_BITS(HUFF_LOOKAHEAD); \
|
||||
s = htbl->lookup[s]; \
|
||||
nb = s >> HUFF_LOOKAHEAD; \
|
||||
/* Pre-execute the common case of nb <= HUFF_LOOKAHEAD */ \
|
||||
DROP_BITS(nb); \
|
||||
s = s & ((1 << HUFF_LOOKAHEAD) - 1); \
|
||||
if (nb > HUFF_LOOKAHEAD) { \
|
||||
/* Equivalent of jpeg_huff_decode() */ \
|
||||
/* Don't use GET_BITS() here because we don't want to modify bits_left */ \
|
||||
s = (get_buffer >> bits_left) & ((1 << (nb)) - 1); \
|
||||
while (s > htbl->maxcode[nb]) { \
|
||||
s <<= 1; \
|
||||
s |= GET_BITS(1); \
|
||||
nb++; \
|
||||
} \
|
||||
if (nb > 16) \
|
||||
s = 0; \
|
||||
else \
|
||||
s = htbl->pub->huffval[(int)(s + htbl->valoffset[nb]) & 0xFF]; \
|
||||
}
|
||||
|
||||
/* Out-of-line case for Huffman code fetching */
|
||||
EXTERN(int) jpeg_huff_decode(bitread_working_state *state,
|
||||
register bit_buf_type get_buffer,
|
||||
register int bits_left, d_derived_tbl *htbl,
|
||||
int min_bits);
|
||||
167
thirdparty/libjpeg-turbo/src/jdicc.c
vendored
Normal file
167
thirdparty/libjpeg-turbo/src/jdicc.c
vendored
Normal file
@@ -0,0 +1,167 @@
|
||||
/*
|
||||
* jdicc.c
|
||||
*
|
||||
* Copyright (C) 1997-1998, Thomas G. Lane, Todd Newman.
|
||||
* Copyright (C) 2017, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file provides code to read International Color Consortium (ICC) device
|
||||
* profiles embedded in JFIF JPEG image files. The ICC has defined a standard
|
||||
* for including such data in JPEG "APP2" markers. The code given here does
|
||||
* not know anything about the internal structure of the ICC profile data; it
|
||||
* just knows how to get the profile data from a JPEG file while reading it.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
|
||||
#define ICC_MARKER (JPEG_APP0 + 2) /* JPEG marker code for ICC */
|
||||
#define ICC_OVERHEAD_LEN 14 /* size of non-profile data in APP2 */
|
||||
|
||||
|
||||
/*
|
||||
* Handy subroutine to test whether a saved marker is an ICC profile marker.
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
marker_is_icc(jpeg_saved_marker_ptr marker)
|
||||
{
|
||||
return
|
||||
marker->marker == ICC_MARKER &&
|
||||
marker->data_length >= ICC_OVERHEAD_LEN &&
|
||||
/* verify the identifying string */
|
||||
marker->data[0] == 0x49 &&
|
||||
marker->data[1] == 0x43 &&
|
||||
marker->data[2] == 0x43 &&
|
||||
marker->data[3] == 0x5F &&
|
||||
marker->data[4] == 0x50 &&
|
||||
marker->data[5] == 0x52 &&
|
||||
marker->data[6] == 0x4F &&
|
||||
marker->data[7] == 0x46 &&
|
||||
marker->data[8] == 0x49 &&
|
||||
marker->data[9] == 0x4C &&
|
||||
marker->data[10] == 0x45 &&
|
||||
marker->data[11] == 0x0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* See if there was an ICC profile in the JPEG file being read; if so,
|
||||
* reassemble and return the profile data.
|
||||
*
|
||||
* TRUE is returned if an ICC profile was found, FALSE if not. If TRUE is
|
||||
* returned, *icc_data_ptr is set to point to the returned data, and
|
||||
* *icc_data_len is set to its length.
|
||||
*
|
||||
* IMPORTANT: the data at *icc_data_ptr is allocated with malloc() and must be
|
||||
* freed by the caller with free() when the caller no longer needs it.
|
||||
* (Alternatively, we could write this routine to use the IJG library's memory
|
||||
* allocator, so that the data would be freed implicitly when
|
||||
* jpeg_finish_decompress() is called. But it seems likely that many
|
||||
* applications will prefer to have the data stick around after decompression
|
||||
* finishes.)
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_read_icc_profile(j_decompress_ptr cinfo, JOCTET **icc_data_ptr,
|
||||
unsigned int *icc_data_len)
|
||||
{
|
||||
jpeg_saved_marker_ptr marker;
|
||||
int num_markers = 0;
|
||||
int seq_no;
|
||||
JOCTET *icc_data;
|
||||
unsigned int total_length;
|
||||
#define MAX_SEQ_NO 255 /* sufficient since marker numbers are bytes */
|
||||
char marker_present[MAX_SEQ_NO + 1]; /* 1 if marker found */
|
||||
unsigned int data_length[MAX_SEQ_NO + 1]; /* size of profile data in marker */
|
||||
unsigned int data_offset[MAX_SEQ_NO + 1]; /* offset for data in marker */
|
||||
|
||||
if (icc_data_ptr == NULL || icc_data_len == NULL)
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
if (cinfo->global_state < DSTATE_READY)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
*icc_data_ptr = NULL; /* avoid confusion if FALSE return */
|
||||
*icc_data_len = 0;
|
||||
|
||||
/* This first pass over the saved markers discovers whether there are
|
||||
* any ICC markers and verifies the consistency of the marker numbering.
|
||||
*/
|
||||
|
||||
for (seq_no = 1; seq_no <= MAX_SEQ_NO; seq_no++)
|
||||
marker_present[seq_no] = 0;
|
||||
|
||||
for (marker = cinfo->marker_list; marker != NULL; marker = marker->next) {
|
||||
if (marker_is_icc(marker)) {
|
||||
if (num_markers == 0)
|
||||
num_markers = marker->data[13];
|
||||
else if (num_markers != marker->data[13]) {
|
||||
WARNMS(cinfo, JWRN_BOGUS_ICC); /* inconsistent num_markers fields */
|
||||
return FALSE;
|
||||
}
|
||||
seq_no = marker->data[12];
|
||||
if (seq_no <= 0 || seq_no > num_markers) {
|
||||
WARNMS(cinfo, JWRN_BOGUS_ICC); /* bogus sequence number */
|
||||
return FALSE;
|
||||
}
|
||||
if (marker_present[seq_no]) {
|
||||
WARNMS(cinfo, JWRN_BOGUS_ICC); /* duplicate sequence numbers */
|
||||
return FALSE;
|
||||
}
|
||||
marker_present[seq_no] = 1;
|
||||
data_length[seq_no] = marker->data_length - ICC_OVERHEAD_LEN;
|
||||
}
|
||||
}
|
||||
|
||||
if (num_markers == 0)
|
||||
return FALSE;
|
||||
|
||||
/* Check for missing markers, count total space needed,
|
||||
* compute offset of each marker's part of the data.
|
||||
*/
|
||||
|
||||
total_length = 0;
|
||||
for (seq_no = 1; seq_no <= num_markers; seq_no++) {
|
||||
if (marker_present[seq_no] == 0) {
|
||||
WARNMS(cinfo, JWRN_BOGUS_ICC); /* missing sequence number */
|
||||
return FALSE;
|
||||
}
|
||||
data_offset[seq_no] = total_length;
|
||||
total_length += data_length[seq_no];
|
||||
}
|
||||
|
||||
if (total_length == 0) {
|
||||
WARNMS(cinfo, JWRN_BOGUS_ICC); /* found only empty markers? */
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* Allocate space for assembled data */
|
||||
icc_data = (JOCTET *)malloc(total_length * sizeof(JOCTET));
|
||||
if (icc_data == NULL)
|
||||
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 11); /* oops, out of memory */
|
||||
|
||||
/* and fill it in */
|
||||
for (marker = cinfo->marker_list; marker != NULL; marker = marker->next) {
|
||||
if (marker_is_icc(marker)) {
|
||||
JOCTET FAR *src_ptr;
|
||||
JOCTET *dst_ptr;
|
||||
unsigned int length;
|
||||
seq_no = marker->data[12];
|
||||
dst_ptr = icc_data + data_offset[seq_no];
|
||||
src_ptr = marker->data + ICC_OVERHEAD_LEN;
|
||||
length = data_length[seq_no];
|
||||
while (length--) {
|
||||
*dst_ptr++ = *src_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*icc_data_ptr = icc_data;
|
||||
*icc_data_len = total_length;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
424
thirdparty/libjpeg-turbo/src/jdinput.c
vendored
Normal file
424
thirdparty/libjpeg-turbo/src/jdinput.c
vendored
Normal file
@@ -0,0 +1,424 @@
|
||||
/*
|
||||
* jdinput.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2010, 2016, 2018, 2022, 2024, D. R. Commander.
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains input control logic for the JPEG decompressor.
|
||||
* These routines are concerned with controlling the decompressor's input
|
||||
* processing (marker reading and coefficient/difference decoding).
|
||||
* The actual input reading is done in jdmarker.c, jdhuff.c, jdphuff.c,
|
||||
* and jdlhuff.c.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jpegapicomp.h"
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_input_controller pub; /* public fields */
|
||||
|
||||
boolean inheaders; /* TRUE until first SOS is reached */
|
||||
} my_input_controller;
|
||||
|
||||
typedef my_input_controller *my_inputctl_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(int) consume_markers(j_decompress_ptr cinfo);
|
||||
|
||||
|
||||
/*
|
||||
* Routines to calculate various quantities related to the size of the image.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
initial_setup(j_decompress_ptr cinfo)
|
||||
/* Called once, when first SOS marker is reached */
|
||||
{
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
|
||||
/* Make sure image isn't bigger than I can handle */
|
||||
if ((long)cinfo->image_height > (long)JPEG_MAX_DIMENSION ||
|
||||
(long)cinfo->image_width > (long)JPEG_MAX_DIMENSION)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int)JPEG_MAX_DIMENSION);
|
||||
|
||||
/* Lossy JPEG images must have 8 or 12 bits per sample. Lossless JPEG images
|
||||
* can have 2 to 16 bits per sample.
|
||||
*/
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
if (cinfo->data_precision < 2 || cinfo->data_precision > 16)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
if (cinfo->data_precision != 8 && cinfo->data_precision != 12)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
}
|
||||
|
||||
/* Check that number of components won't exceed internal array sizes */
|
||||
if (cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
|
||||
/* Compute maximum sampling factors; check factor validity */
|
||||
cinfo->max_h_samp_factor = 1;
|
||||
cinfo->max_v_samp_factor = 1;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->h_samp_factor <= 0 ||
|
||||
compptr->h_samp_factor > MAX_SAMP_FACTOR ||
|
||||
compptr->v_samp_factor <= 0 ||
|
||||
compptr->v_samp_factor > MAX_SAMP_FACTOR)
|
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING);
|
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
|
||||
compptr->h_samp_factor);
|
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
|
||||
compptr->v_samp_factor);
|
||||
}
|
||||
|
||||
#if JPEG_LIB_VERSION >= 80
|
||||
cinfo->block_size = data_unit;
|
||||
cinfo->natural_order = jpeg_natural_order;
|
||||
cinfo->lim_Se = DCTSIZE2 - 1;
|
||||
#endif
|
||||
|
||||
/* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE in lossy
|
||||
* mode. In the full decompressor, this will be overridden by jdmaster.c;
|
||||
* but in the transcoder, jdmaster.c is not used, so we must do it here.
|
||||
*/
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
cinfo->min_DCT_h_scaled_size = cinfo->min_DCT_v_scaled_size = data_unit;
|
||||
#else
|
||||
cinfo->min_DCT_scaled_size = data_unit;
|
||||
#endif
|
||||
|
||||
/* Compute dimensions of components */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = data_unit;
|
||||
#else
|
||||
compptr->DCT_scaled_size = data_unit;
|
||||
#endif
|
||||
/* Size in data units */
|
||||
compptr->width_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * (long)compptr->h_samp_factor,
|
||||
(long)(cinfo->max_h_samp_factor * data_unit));
|
||||
compptr->height_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * (long)compptr->v_samp_factor,
|
||||
(long)(cinfo->max_v_samp_factor * data_unit));
|
||||
/* Set the first and last MCU columns to decompress from multi-scan images.
|
||||
* By default, decompress all of the MCU columns.
|
||||
*/
|
||||
cinfo->master->first_MCU_col[ci] = 0;
|
||||
cinfo->master->last_MCU_col[ci] = compptr->width_in_blocks - 1;
|
||||
/* downsampled_width and downsampled_height will also be overridden by
|
||||
* jdmaster.c if we are doing full decompression. The transcoder library
|
||||
* doesn't use these values, but the calling application might.
|
||||
*/
|
||||
/* Size in samples */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * (long)compptr->h_samp_factor,
|
||||
(long)cinfo->max_h_samp_factor);
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * (long)compptr->v_samp_factor,
|
||||
(long)cinfo->max_v_samp_factor);
|
||||
/* Mark component needed, until color conversion says otherwise */
|
||||
compptr->component_needed = TRUE;
|
||||
/* Mark no quantization table yet saved for component */
|
||||
compptr->quant_table = NULL;
|
||||
}
|
||||
|
||||
/* Compute number of fully interleaved MCU rows. */
|
||||
cinfo->total_iMCU_rows = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height,
|
||||
(long)(cinfo->max_v_samp_factor * data_unit));
|
||||
|
||||
/* Decide whether file contains multiple scans */
|
||||
if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
|
||||
cinfo->inputctl->has_multiple_scans = TRUE;
|
||||
else
|
||||
cinfo->inputctl->has_multiple_scans = FALSE;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
per_scan_setup(j_decompress_ptr cinfo)
|
||||
/* Do computations that are needed before processing a JPEG scan */
|
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
|
||||
{
|
||||
int ci, mcublks, tmp;
|
||||
jpeg_component_info *compptr;
|
||||
int data_unit = cinfo->master->lossless ? 1 : DCTSIZE;
|
||||
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
|
||||
/* Noninterleaved (single-component) scan */
|
||||
compptr = cinfo->cur_comp_info[0];
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = compptr->width_in_blocks;
|
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
|
||||
|
||||
/* For noninterleaved scan, always one data unit per MCU */
|
||||
compptr->MCU_width = 1;
|
||||
compptr->MCU_height = 1;
|
||||
compptr->MCU_blocks = 1;
|
||||
compptr->MCU_sample_width = compptr->_DCT_scaled_size;
|
||||
compptr->last_col_width = 1;
|
||||
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||
* as the number of data unit rows present in the last iMCU row.
|
||||
*/
|
||||
tmp = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (tmp == 0) tmp = compptr->v_samp_factor;
|
||||
compptr->last_row_height = tmp;
|
||||
|
||||
/* Prepare array describing MCU composition */
|
||||
cinfo->blocks_in_MCU = 1;
|
||||
cinfo->MCU_membership[0] = 0;
|
||||
|
||||
} else {
|
||||
|
||||
/* Interleaved (multi-component) scan */
|
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width,
|
||||
(long)(cinfo->max_h_samp_factor * data_unit));
|
||||
cinfo->MCU_rows_in_scan = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height,
|
||||
(long)(cinfo->max_v_samp_factor * data_unit));
|
||||
|
||||
cinfo->blocks_in_MCU = 0;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Sampling factors give # of data units of component in each MCU */
|
||||
compptr->MCU_width = compptr->h_samp_factor;
|
||||
compptr->MCU_height = compptr->v_samp_factor;
|
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
|
||||
compptr->MCU_sample_width = compptr->MCU_width *
|
||||
compptr->_DCT_scaled_size;
|
||||
/* Figure number of non-dummy data units in last MCU column & row */
|
||||
tmp = (int)(compptr->width_in_blocks % compptr->MCU_width);
|
||||
if (tmp == 0) tmp = compptr->MCU_width;
|
||||
compptr->last_col_width = tmp;
|
||||
tmp = (int)(compptr->height_in_blocks % compptr->MCU_height);
|
||||
if (tmp == 0) tmp = compptr->MCU_height;
|
||||
compptr->last_row_height = tmp;
|
||||
/* Prepare array describing MCU composition */
|
||||
mcublks = compptr->MCU_blocks;
|
||||
if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
|
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
|
||||
while (mcublks-- > 0) {
|
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Save away a copy of the Q-table referenced by each component present
|
||||
* in the current scan, unless already saved during a prior scan.
|
||||
*
|
||||
* In a multiple-scan JPEG file, the encoder could assign different components
|
||||
* the same Q-table slot number, but change table definitions between scans
|
||||
* so that each component uses a different Q-table. (The IJG encoder is not
|
||||
* currently capable of doing this, but other encoders might.) Since we want
|
||||
* to be able to dequantize all the components at the end of the file, this
|
||||
* means that we have to save away the table actually used for each component.
|
||||
* We do this by copying the table at the start of the first scan containing
|
||||
* the component.
|
||||
* Rec. ITU-T T.81 | ISO/IEC 10918-1 prohibits the encoder from changing the
|
||||
* contents of a Q-table slot between scans of a component using that slot. If
|
||||
* the encoder does so anyway, this decoder will simply use the Q-table values
|
||||
* that were current at the start of the first scan for the component.
|
||||
*
|
||||
* The decompressor output side looks only at the saved quant tables,
|
||||
* not at the current Q-table slots.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
latch_quant_tables(j_decompress_ptr cinfo)
|
||||
{
|
||||
int ci, qtblno;
|
||||
jpeg_component_info *compptr;
|
||||
JQUANT_TBL *qtbl;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* No work if we already saved Q-table for this component */
|
||||
if (compptr->quant_table != NULL)
|
||||
continue;
|
||||
/* Make sure specified quantization table is present */
|
||||
qtblno = compptr->quant_tbl_no;
|
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
||||
/* OK, save away the quantization table */
|
||||
qtbl = (JQUANT_TBL *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(JQUANT_TBL));
|
||||
memcpy(qtbl, cinfo->quant_tbl_ptrs[qtblno], sizeof(JQUANT_TBL));
|
||||
compptr->quant_table = qtbl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the input modules to read a scan of compressed data.
|
||||
* The first call to this is done by jdmaster.c after initializing
|
||||
* the entire decompressor (during jpeg_start_decompress).
|
||||
* Subsequent calls come from consume_markers, below.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_input_pass(j_decompress_ptr cinfo)
|
||||
{
|
||||
per_scan_setup(cinfo);
|
||||
if (!cinfo->master->lossless)
|
||||
latch_quant_tables(cinfo);
|
||||
(*cinfo->entropy->start_pass) (cinfo);
|
||||
(*cinfo->coef->start_input_pass) (cinfo);
|
||||
cinfo->inputctl->consume_input = cinfo->coef->consume_data;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up after inputting a compressed-data scan.
|
||||
* This is called by the coefficient or difference controller after it's read
|
||||
* all the expected data of the scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_input_pass(j_decompress_ptr cinfo)
|
||||
{
|
||||
cinfo->inputctl->consume_input = consume_markers;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read JPEG markers before, between, or after compressed-data scans.
|
||||
* Change state as necessary when a new scan is reached.
|
||||
* Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
|
||||
*
|
||||
* The consume_input method pointer points either here or to the
|
||||
* coefficient or difference controller's consume_data routine, depending on
|
||||
* whether we are reading a compressed data segment or inter-segment markers.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
consume_markers(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_inputctl_ptr inputctl = (my_inputctl_ptr)cinfo->inputctl;
|
||||
int val;
|
||||
|
||||
if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
|
||||
return JPEG_REACHED_EOI;
|
||||
|
||||
val = (*cinfo->marker->read_markers) (cinfo);
|
||||
|
||||
switch (val) {
|
||||
case JPEG_REACHED_SOS: /* Found SOS */
|
||||
if (inputctl->inheaders) { /* 1st SOS */
|
||||
initial_setup(cinfo);
|
||||
inputctl->inheaders = FALSE;
|
||||
/* Note: start_input_pass must be called by jdmaster.c
|
||||
* before any more input can be consumed. jdapimin.c is
|
||||
* responsible for enforcing this sequencing.
|
||||
*/
|
||||
} else { /* 2nd or later SOS marker */
|
||||
if (!inputctl->pub.has_multiple_scans)
|
||||
ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
|
||||
start_input_pass(cinfo);
|
||||
}
|
||||
break;
|
||||
case JPEG_REACHED_EOI: /* Found EOI */
|
||||
inputctl->pub.eoi_reached = TRUE;
|
||||
if (inputctl->inheaders) { /* Tables-only datastream, apparently */
|
||||
if (cinfo->marker->saw_SOF)
|
||||
ERREXIT(cinfo, JERR_SOF_NO_SOS);
|
||||
} else {
|
||||
/* Prevent infinite loop in coef ctlr's decompress_data routine
|
||||
* if user set output_scan_number larger than number of scans.
|
||||
*/
|
||||
if (cinfo->output_scan_number > cinfo->input_scan_number)
|
||||
cinfo->output_scan_number = cinfo->input_scan_number;
|
||||
}
|
||||
break;
|
||||
case JPEG_SUSPENDED:
|
||||
break;
|
||||
}
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Reset state to begin a fresh datastream.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
reset_input_controller(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_inputctl_ptr inputctl = (my_inputctl_ptr)cinfo->inputctl;
|
||||
|
||||
inputctl->pub.consume_input = consume_markers;
|
||||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
|
||||
inputctl->pub.eoi_reached = FALSE;
|
||||
inputctl->inheaders = TRUE;
|
||||
/* Reset other modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr)cinfo);
|
||||
(*cinfo->marker->reset_marker_reader) (cinfo);
|
||||
/* Reset progression state -- would be cleaner if entropy decoder did this */
|
||||
cinfo->coef_bits = NULL;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the input controller module.
|
||||
* This is called only once, when the decompression object is created.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_input_controller(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_inputctl_ptr inputctl;
|
||||
|
||||
/* Create subobject in permanent pool */
|
||||
inputctl = (my_inputctl_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT,
|
||||
sizeof(my_input_controller));
|
||||
cinfo->inputctl = (struct jpeg_input_controller *)inputctl;
|
||||
/* Initialize method pointers */
|
||||
inputctl->pub.consume_input = consume_markers;
|
||||
inputctl->pub.reset_input_controller = reset_input_controller;
|
||||
inputctl->pub.start_input_pass = start_input_pass;
|
||||
inputctl->pub.finish_input_pass = finish_input_pass;
|
||||
/* Initialize state: can't use reset_input_controller since we don't
|
||||
* want to try to reset other modules yet.
|
||||
*/
|
||||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
|
||||
inputctl->pub.eoi_reached = FALSE;
|
||||
inputctl->inheaders = TRUE;
|
||||
}
|
||||
482
thirdparty/libjpeg-turbo/src/jdmainct.c
vendored
Normal file
482
thirdparty/libjpeg-turbo/src/jdmainct.c
vendored
Normal file
@@ -0,0 +1,482 @@
|
||||
/*
|
||||
* jdmainct.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2010, 2016, 2022, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains the main buffer controller for decompression.
|
||||
* The main buffer lies between the JPEG decompressor proper and the
|
||||
* post-processor; it holds downsampled data in the JPEG colorspace.
|
||||
*
|
||||
* Note that this code is bypassed in raw-data mode, since the application
|
||||
* supplies the equivalent of the main buffer in that case.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
#include "jdmainct.h"
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED)
|
||||
|
||||
/*
|
||||
* In the current system design, the main buffer need never be a full-image
|
||||
* buffer; any full-height buffers will be found inside the coefficient,
|
||||
* difference, or postprocessing controllers. Nonetheless, the main controller
|
||||
* is not trivial. Its responsibility is to provide context rows for
|
||||
* upsampling/rescaling, and doing this in an efficient fashion is a bit
|
||||
* tricky.
|
||||
*
|
||||
* Postprocessor input data is counted in "row groups". A row group
|
||||
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
|
||||
* sample rows of each component. (We require DCT_scaled_size values to be
|
||||
* chosen such that these numbers are integers. In practice DCT_scaled_size
|
||||
* values will likely be powers of two, so we actually have the stronger
|
||||
* condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
|
||||
* Upsampling will typically produce max_v_samp_factor pixel rows from each
|
||||
* row group (times any additional scale factor that the upsampler is
|
||||
* applying).
|
||||
*
|
||||
* The coefficient or difference controller will deliver data to us one iMCU
|
||||
* row at a time; each iMCU row contains v_samp_factor * DCT_scaled_size sample
|
||||
* rows, or exactly min_DCT_scaled_size row groups. (This amount of data
|
||||
* corresponds to one row of MCUs when the image is fully interleaved.) Note
|
||||
* that the number of sample rows varies across components, but the number of
|
||||
* row groups does not. Some garbage sample rows may be included in the last
|
||||
* iMCU row at the bottom of the image.
|
||||
*
|
||||
* Depending on the vertical scaling algorithm used, the upsampler may need
|
||||
* access to the sample row(s) above and below its current input row group.
|
||||
* The upsampler is required to set need_context_rows TRUE at global selection
|
||||
* time if so. When need_context_rows is FALSE, this controller can simply
|
||||
* obtain one iMCU row at a time from the coefficient or difference controller
|
||||
* and dole it out as row groups to the postprocessor.
|
||||
*
|
||||
* When need_context_rows is TRUE, this controller guarantees that the buffer
|
||||
* passed to postprocessing contains at least one row group's worth of samples
|
||||
* above and below the row group(s) being processed. Note that the context
|
||||
* rows "above" the first passed row group appear at negative row offsets in
|
||||
* the passed buffer. At the top and bottom of the image, the required
|
||||
* context rows are manufactured by duplicating the first or last real sample
|
||||
* row; this avoids having special cases in the upsampling inner loops.
|
||||
*
|
||||
* The amount of context is fixed at one row group just because that's a
|
||||
* convenient number for this controller to work with. The existing
|
||||
* upsamplers really only need one sample row of context. An upsampler
|
||||
* supporting arbitrary output rescaling might wish for more than one row
|
||||
* group of context when shrinking the image; tough, we don't handle that.
|
||||
* (This is justified by the assumption that downsizing will be handled mostly
|
||||
* by adjusting the DCT_scaled_size values, so that the actual scale factor at
|
||||
* the upsample step needn't be much less than one.)
|
||||
*
|
||||
* To provide the desired context, we have to retain the last two row groups
|
||||
* of one iMCU row while reading in the next iMCU row. (The last row group
|
||||
* can't be processed until we have another row group for its below-context,
|
||||
* and so we have to save the next-to-last group too for its above-context.)
|
||||
* We could do this most simply by copying data around in our buffer, but
|
||||
* that'd be very slow. We can avoid copying any data by creating a rather
|
||||
* strange pointer structure. Here's how it works. We allocate a workspace
|
||||
* consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
|
||||
* of row groups per iMCU row). We create two sets of redundant pointers to
|
||||
* the workspace. Labeling the physical row groups 0 to M+1, the synthesized
|
||||
* pointer lists look like this:
|
||||
* M+1 M-1
|
||||
* master pointer --> 0 master pointer --> 0
|
||||
* 1 1
|
||||
* ... ...
|
||||
* M-3 M-3
|
||||
* M-2 M
|
||||
* M-1 M+1
|
||||
* M M-2
|
||||
* M+1 M-1
|
||||
* 0 0
|
||||
* We read alternate iMCU rows using each master pointer; thus the last two
|
||||
* row groups of the previous iMCU row remain un-overwritten in the workspace.
|
||||
* The pointer lists are set up so that the required context rows appear to
|
||||
* be adjacent to the proper places when we pass the pointer lists to the
|
||||
* upsampler.
|
||||
*
|
||||
* The above pictures describe the normal state of the pointer lists.
|
||||
* At top and bottom of the image, we diddle the pointer lists to duplicate
|
||||
* the first or last sample row as necessary (this is cheaper than copying
|
||||
* sample rows around).
|
||||
*
|
||||
* This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
|
||||
* situation each iMCU row provides only one row group so the buffering logic
|
||||
* must be different (eg, we must read two iMCU rows before we can emit the
|
||||
* first row group). For now, we simply do not support providing context
|
||||
* rows when min_DCT_scaled_size is 1. That combination seems unlikely to
|
||||
* be worth providing --- if someone wants a 1/8th-size preview, they probably
|
||||
* want it quick and dirty, so a context-free upsampler is sufficient.
|
||||
*/
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(void) process_data_simple_main(j_decompress_ptr cinfo,
|
||||
_JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail);
|
||||
METHODDEF(void) process_data_context_main(j_decompress_ptr cinfo,
|
||||
_JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail);
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
METHODDEF(void) process_data_crank_post(j_decompress_ptr cinfo,
|
||||
_JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail);
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
alloc_funny_pointers(j_decompress_ptr cinfo)
|
||||
/* Allocate space for the funny pointer lists.
|
||||
* This is done only once, not once per pass.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
|
||||
int ci, rgroup;
|
||||
int M = cinfo->_min_DCT_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
_JSAMPARRAY xbuf;
|
||||
|
||||
/* Get top-level space for component array pointers.
|
||||
* We alloc both arrays with one call to save a few cycles.
|
||||
*/
|
||||
main_ptr->xbuffer[0] = (_JSAMPIMAGE)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components * 2 *
|
||||
sizeof(_JSAMPARRAY));
|
||||
main_ptr->xbuffer[1] = main_ptr->xbuffer[0] + cinfo->num_components;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
|
||||
cinfo->_min_DCT_scaled_size; /* height of a row group of component */
|
||||
/* Get space for pointer lists --- M+4 row groups in each list.
|
||||
* We alloc both pointer lists with one call to save a few cycles.
|
||||
*/
|
||||
xbuf = (_JSAMPARRAY)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
2 * (rgroup * (M + 4)) * sizeof(_JSAMPROW));
|
||||
xbuf += rgroup; /* want one row group at negative offsets */
|
||||
main_ptr->xbuffer[0][ci] = xbuf;
|
||||
xbuf += rgroup * (M + 4);
|
||||
main_ptr->xbuffer[1][ci] = xbuf;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
make_funny_pointers(j_decompress_ptr cinfo)
|
||||
/* Create the funny pointer lists discussed in the comments above.
|
||||
* The actual workspace is already allocated (in main_ptr->buffer),
|
||||
* and the space for the pointer lists is allocated too.
|
||||
* This routine just fills in the curiously ordered lists.
|
||||
* This will be repeated at the beginning of each pass.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
|
||||
int ci, i, rgroup;
|
||||
int M = cinfo->_min_DCT_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
_JSAMPARRAY buf, xbuf0, xbuf1;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
|
||||
cinfo->_min_DCT_scaled_size; /* height of a row group of component */
|
||||
xbuf0 = main_ptr->xbuffer[0][ci];
|
||||
xbuf1 = main_ptr->xbuffer[1][ci];
|
||||
/* First copy the workspace pointers as-is */
|
||||
buf = main_ptr->buffer[ci];
|
||||
for (i = 0; i < rgroup * (M + 2); i++) {
|
||||
xbuf0[i] = xbuf1[i] = buf[i];
|
||||
}
|
||||
/* In the second list, put the last four row groups in swapped order */
|
||||
for (i = 0; i < rgroup * 2; i++) {
|
||||
xbuf1[rgroup * (M - 2) + i] = buf[rgroup * M + i];
|
||||
xbuf1[rgroup * M + i] = buf[rgroup * (M - 2) + i];
|
||||
}
|
||||
/* The wraparound pointers at top and bottom will be filled later
|
||||
* (see set_wraparound_pointers, below). Initially we want the "above"
|
||||
* pointers to duplicate the first actual data line. This only needs
|
||||
* to happen in xbuffer[0].
|
||||
*/
|
||||
for (i = 0; i < rgroup; i++) {
|
||||
xbuf0[i - rgroup] = xbuf0[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
set_bottom_pointers(j_decompress_ptr cinfo)
|
||||
/* Change the pointer lists to duplicate the last sample row at the bottom
|
||||
* of the image. whichptr indicates which xbuffer holds the final iMCU row.
|
||||
* Also sets rowgroups_avail to indicate number of nondummy row groups in row.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
|
||||
int ci, i, rgroup, iMCUheight, rows_left;
|
||||
jpeg_component_info *compptr;
|
||||
_JSAMPARRAY xbuf;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Count sample rows in one iMCU row and in one row group */
|
||||
iMCUheight = compptr->v_samp_factor * compptr->_DCT_scaled_size;
|
||||
rgroup = iMCUheight / cinfo->_min_DCT_scaled_size;
|
||||
/* Count nondummy sample rows remaining for this component */
|
||||
rows_left = (int)(compptr->downsampled_height % (JDIMENSION)iMCUheight);
|
||||
if (rows_left == 0) rows_left = iMCUheight;
|
||||
/* Count nondummy row groups. Should get same answer for each component,
|
||||
* so we need only do it once.
|
||||
*/
|
||||
if (ci == 0) {
|
||||
main_ptr->rowgroups_avail = (JDIMENSION)((rows_left - 1) / rgroup + 1);
|
||||
}
|
||||
/* Duplicate the last real sample row rgroup*2 times; this pads out the
|
||||
* last partial rowgroup and ensures at least one full rowgroup of context.
|
||||
*/
|
||||
xbuf = main_ptr->xbuffer[main_ptr->whichptr][ci];
|
||||
for (i = 0; i < rgroup * 2; i++) {
|
||||
xbuf[rows_left + i] = xbuf[rows_left - 1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_main(j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (cinfo->upsample->need_context_rows) {
|
||||
main_ptr->pub._process_data = process_data_context_main;
|
||||
make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
|
||||
main_ptr->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
|
||||
main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
|
||||
main_ptr->iMCU_row_ctr = 0;
|
||||
} else {
|
||||
/* Simple case with no context needed */
|
||||
main_ptr->pub._process_data = process_data_simple_main;
|
||||
}
|
||||
main_ptr->buffer_full = FALSE; /* Mark buffer empty */
|
||||
main_ptr->rowgroup_ctr = 0;
|
||||
break;
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
case JBUF_CRANK_DEST:
|
||||
/* For last pass of 2-pass quantization, just crank the postprocessor */
|
||||
main_ptr->pub._process_data = process_data_crank_post;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This handles the simple case where no context is required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_simple_main(j_decompress_ptr cinfo, _JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
|
||||
JDIMENSION rowgroups_avail;
|
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (!main_ptr->buffer_full) {
|
||||
if (!(*cinfo->coef->_decompress_data) (cinfo, main_ptr->buffer))
|
||||
return; /* suspension forced, can do nothing more */
|
||||
main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
|
||||
}
|
||||
|
||||
/* There are always min_DCT_scaled_size row groups in an iMCU row. */
|
||||
rowgroups_avail = (JDIMENSION)cinfo->_min_DCT_scaled_size;
|
||||
/* Note: at the bottom of the image, we may pass extra garbage row groups
|
||||
* to the postprocessor. The postprocessor has to check for bottom
|
||||
* of image anyway (at row resolution), so no point in us doing it too.
|
||||
*/
|
||||
|
||||
/* Feed the postprocessor */
|
||||
(*cinfo->post->_post_process_data) (cinfo, main_ptr->buffer,
|
||||
&main_ptr->rowgroup_ctr, rowgroups_avail,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
|
||||
/* Has postprocessor consumed all the data yet? If so, mark buffer empty */
|
||||
if (main_ptr->rowgroup_ctr >= rowgroups_avail) {
|
||||
main_ptr->buffer_full = FALSE;
|
||||
main_ptr->rowgroup_ctr = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This handles the case where context rows must be provided.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_context_main(j_decompress_ptr cinfo, _JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
|
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (!main_ptr->buffer_full) {
|
||||
if (!(*cinfo->coef->_decompress_data) (cinfo,
|
||||
main_ptr->xbuffer[main_ptr->whichptr]))
|
||||
return; /* suspension forced, can do nothing more */
|
||||
main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
|
||||
main_ptr->iMCU_row_ctr++; /* count rows received */
|
||||
}
|
||||
|
||||
/* Postprocessor typically will not swallow all the input data it is handed
|
||||
* in one call (due to filling the output buffer first). Must be prepared
|
||||
* to exit and restart. This switch lets us keep track of how far we got.
|
||||
* Note that each case falls through to the next on successful completion.
|
||||
*/
|
||||
switch (main_ptr->context_state) {
|
||||
case CTX_POSTPONED_ROW:
|
||||
/* Call postprocessor using previously set pointers for postponed row */
|
||||
(*cinfo->post->_post_process_data) (cinfo,
|
||||
main_ptr->xbuffer[main_ptr->whichptr],
|
||||
&main_ptr->rowgroup_ctr,
|
||||
main_ptr->rowgroups_avail, output_buf,
|
||||
out_row_ctr, out_rows_avail);
|
||||
if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail)
|
||||
return; /* Need to suspend */
|
||||
main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
|
||||
if (*out_row_ctr >= out_rows_avail)
|
||||
return; /* Postprocessor exactly filled output buf */
|
||||
FALLTHROUGH /*FALLTHROUGH*/
|
||||
case CTX_PREPARE_FOR_IMCU:
|
||||
/* Prepare to process first M-1 row groups of this iMCU row */
|
||||
main_ptr->rowgroup_ctr = 0;
|
||||
main_ptr->rowgroups_avail = (JDIMENSION)(cinfo->_min_DCT_scaled_size - 1);
|
||||
/* Check for bottom of image: if so, tweak pointers to "duplicate"
|
||||
* the last sample row, and adjust rowgroups_avail to ignore padding rows.
|
||||
*/
|
||||
if (main_ptr->iMCU_row_ctr == cinfo->total_iMCU_rows)
|
||||
set_bottom_pointers(cinfo);
|
||||
main_ptr->context_state = CTX_PROCESS_IMCU;
|
||||
FALLTHROUGH /*FALLTHROUGH*/
|
||||
case CTX_PROCESS_IMCU:
|
||||
/* Call postprocessor using previously set pointers */
|
||||
(*cinfo->post->_post_process_data) (cinfo,
|
||||
main_ptr->xbuffer[main_ptr->whichptr],
|
||||
&main_ptr->rowgroup_ctr,
|
||||
main_ptr->rowgroups_avail, output_buf,
|
||||
out_row_ctr, out_rows_avail);
|
||||
if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail)
|
||||
return; /* Need to suspend */
|
||||
/* After the first iMCU, change wraparound pointers to normal state */
|
||||
if (main_ptr->iMCU_row_ctr == 1)
|
||||
set_wraparound_pointers(cinfo);
|
||||
/* Prepare to load new iMCU row using other xbuffer list */
|
||||
main_ptr->whichptr ^= 1; /* 0=>1 or 1=>0 */
|
||||
main_ptr->buffer_full = FALSE;
|
||||
/* Still need to process last row group of this iMCU row, */
|
||||
/* which is saved at index M+1 of the other xbuffer */
|
||||
main_ptr->rowgroup_ctr = (JDIMENSION)(cinfo->_min_DCT_scaled_size + 1);
|
||||
main_ptr->rowgroups_avail = (JDIMENSION)(cinfo->_min_DCT_scaled_size + 2);
|
||||
main_ptr->context_state = CTX_POSTPONED_ROW;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* Final pass of two-pass quantization: just call the postprocessor.
|
||||
* Source data will be the postprocessor controller's internal buffer.
|
||||
*/
|
||||
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_crank_post(j_decompress_ptr cinfo, _JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
|
||||
{
|
||||
(*cinfo->post->_post_process_data) (cinfo, (_JSAMPIMAGE)NULL,
|
||||
(JDIMENSION *)NULL, (JDIMENSION)0,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
}
|
||||
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_d_main_controller(j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_main_ptr main_ptr;
|
||||
int ci, rgroup, ngroups;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE || cinfo->data_precision < 2)
|
||||
#else
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE ||
|
||||
cinfo->data_precision < BITS_IN_JSAMPLE - 3)
|
||||
#endif
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
}
|
||||
|
||||
main_ptr = (my_main_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_main_controller));
|
||||
cinfo->main = (struct jpeg_d_main_controller *)main_ptr;
|
||||
main_ptr->pub.start_pass = start_pass_main;
|
||||
|
||||
if (need_full_buffer) /* shouldn't happen */
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
/* Allocate the workspace.
|
||||
* ngroups is the number of row groups we need.
|
||||
*/
|
||||
if (cinfo->upsample->need_context_rows) {
|
||||
if (cinfo->_min_DCT_scaled_size < 2) /* unsupported, see comments above */
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
|
||||
ngroups = cinfo->_min_DCT_scaled_size + 2;
|
||||
} else {
|
||||
ngroups = cinfo->_min_DCT_scaled_size;
|
||||
}
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
|
||||
cinfo->_min_DCT_scaled_size; /* height of a row group of component */
|
||||
main_ptr->buffer[ci] = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
compptr->width_in_blocks * compptr->_DCT_scaled_size,
|
||||
(JDIMENSION)(rgroup * ngroups));
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED) */
|
||||
78
thirdparty/libjpeg-turbo/src/jdmainct.h
vendored
Normal file
78
thirdparty/libjpeg-turbo/src/jdmainct.h
vendored
Normal file
@@ -0,0 +1,78 @@
|
||||
/*
|
||||
* jdmainct.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jpeglib.h"
|
||||
#include "jpegapicomp.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED)
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_main_controller pub; /* public fields */
|
||||
|
||||
/* Pointer to allocated workspace (M or M+2 row groups). */
|
||||
_JSAMPARRAY buffer[MAX_COMPONENTS];
|
||||
|
||||
boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
|
||||
JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
|
||||
|
||||
/* Remaining fields are only used in the context case. */
|
||||
|
||||
/* These are the master pointers to the funny-order pointer lists. */
|
||||
_JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
|
||||
|
||||
int whichptr; /* indicates which pointer set is now in use */
|
||||
int context_state; /* process_data state machine status */
|
||||
JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
|
||||
JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
|
||||
} my_main_controller;
|
||||
|
||||
typedef my_main_controller *my_main_ptr;
|
||||
|
||||
|
||||
/* context_state values: */
|
||||
#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
|
||||
#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
|
||||
#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
set_wraparound_pointers(j_decompress_ptr cinfo)
|
||||
/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
|
||||
* This changes the pointer list state from top-of-image to the normal state.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
|
||||
int ci, i, rgroup;
|
||||
int M = cinfo->_min_DCT_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
_JSAMPARRAY xbuf0, xbuf1;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
|
||||
cinfo->_min_DCT_scaled_size; /* height of a row group of component */
|
||||
xbuf0 = main_ptr->xbuffer[0][ci];
|
||||
xbuf1 = main_ptr->xbuffer[1][ci];
|
||||
for (i = 0; i < rgroup; i++) {
|
||||
xbuf0[i - rgroup] = xbuf0[rgroup * (M + 1) + i];
|
||||
xbuf1[i - rgroup] = xbuf1[rgroup * (M + 1) + i];
|
||||
xbuf0[rgroup * (M + 2) + i] = xbuf0[i];
|
||||
xbuf1[rgroup * (M + 2) + i] = xbuf1[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED) */
|
||||
1384
thirdparty/libjpeg-turbo/src/jdmarker.c
vendored
Normal file
1384
thirdparty/libjpeg-turbo/src/jdmarker.c
vendored
Normal file
File diff suppressed because it is too large
Load Diff
893
thirdparty/libjpeg-turbo/src/jdmaster.c
vendored
Normal file
893
thirdparty/libjpeg-turbo/src/jdmaster.c
vendored
Normal file
@@ -0,0 +1,893 @@
|
||||
/*
|
||||
* jdmaster.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 2002-2009 by Guido Vollbeding.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2009-2011, 2016, 2019, 2022-2024, D. R. Commander.
|
||||
* Copyright (C) 2013, Linaro Limited.
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains master control logic for the JPEG decompressor.
|
||||
* These routines are concerned with selecting the modules to be executed
|
||||
* and with determining the number of passes and the work to be done in each
|
||||
* pass.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jpegapicomp.h"
|
||||
#include "jdmaster.h"
|
||||
|
||||
|
||||
/*
|
||||
* Determine whether merged upsample/color conversion should be used.
|
||||
* CRUCIAL: this must match the actual capabilities of jdmerge.c!
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
use_merged_upsample(j_decompress_ptr cinfo)
|
||||
{
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
/* Colorspace conversion is not supported with lossless JPEG images */
|
||||
if (cinfo->master->lossless)
|
||||
return FALSE;
|
||||
/* Merging is the equivalent of plain box-filter upsampling */
|
||||
if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
|
||||
return FALSE;
|
||||
/* jdmerge.c only supports YCC=>RGB and YCC=>RGB565 color conversion */
|
||||
if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
|
||||
(cinfo->out_color_space != JCS_RGB &&
|
||||
cinfo->out_color_space != JCS_RGB565 &&
|
||||
cinfo->out_color_space != JCS_EXT_RGB &&
|
||||
cinfo->out_color_space != JCS_EXT_RGBX &&
|
||||
cinfo->out_color_space != JCS_EXT_BGR &&
|
||||
cinfo->out_color_space != JCS_EXT_BGRX &&
|
||||
cinfo->out_color_space != JCS_EXT_XBGR &&
|
||||
cinfo->out_color_space != JCS_EXT_XRGB &&
|
||||
cinfo->out_color_space != JCS_EXT_RGBA &&
|
||||
cinfo->out_color_space != JCS_EXT_BGRA &&
|
||||
cinfo->out_color_space != JCS_EXT_ABGR &&
|
||||
cinfo->out_color_space != JCS_EXT_ARGB))
|
||||
return FALSE;
|
||||
if ((cinfo->out_color_space == JCS_RGB565 &&
|
||||
cinfo->out_color_components != 3) ||
|
||||
(cinfo->out_color_space != JCS_RGB565 &&
|
||||
cinfo->out_color_components != rgb_pixelsize[cinfo->out_color_space]))
|
||||
return FALSE;
|
||||
/* and it only handles 2h1v or 2h2v sampling ratios */
|
||||
if (cinfo->comp_info[0].h_samp_factor != 2 ||
|
||||
cinfo->comp_info[1].h_samp_factor != 1 ||
|
||||
cinfo->comp_info[2].h_samp_factor != 1 ||
|
||||
cinfo->comp_info[0].v_samp_factor > 2 ||
|
||||
cinfo->comp_info[1].v_samp_factor != 1 ||
|
||||
cinfo->comp_info[2].v_samp_factor != 1)
|
||||
return FALSE;
|
||||
/* furthermore, it doesn't work if we've scaled the IDCTs differently */
|
||||
if (cinfo->comp_info[0]._DCT_scaled_size != cinfo->_min_DCT_scaled_size ||
|
||||
cinfo->comp_info[1]._DCT_scaled_size != cinfo->_min_DCT_scaled_size ||
|
||||
cinfo->comp_info[2]._DCT_scaled_size != cinfo->_min_DCT_scaled_size)
|
||||
return FALSE;
|
||||
/* ??? also need to test for upsample-time rescaling, when & if supported */
|
||||
return TRUE; /* by golly, it'll work... */
|
||||
#else
|
||||
return FALSE;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Compute output image dimensions and related values.
|
||||
* NOTE: this is exported for possible use by application.
|
||||
* Hence it mustn't do anything that can't be done twice.
|
||||
*/
|
||||
|
||||
#if JPEG_LIB_VERSION >= 80
|
||||
GLOBAL(void)
|
||||
#else
|
||||
LOCAL(void)
|
||||
#endif
|
||||
jpeg_core_output_dimensions(j_decompress_ptr cinfo)
|
||||
/* Do computations that are needed before master selection phase.
|
||||
* This function is used for transcoding and full decompression.
|
||||
*/
|
||||
{
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (!cinfo->master->lossless) {
|
||||
/* Compute actual output image dimensions and DCT scaling choices. */
|
||||
if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom) {
|
||||
/* Provide 1/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 1;
|
||||
cinfo->_min_DCT_v_scaled_size = 1;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 2) {
|
||||
/* Provide 2/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 2L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 2L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 2;
|
||||
cinfo->_min_DCT_v_scaled_size = 2;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 3) {
|
||||
/* Provide 3/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 3L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 3L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 3;
|
||||
cinfo->_min_DCT_v_scaled_size = 3;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 4) {
|
||||
/* Provide 4/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 4L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 4L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 4;
|
||||
cinfo->_min_DCT_v_scaled_size = 4;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 5) {
|
||||
/* Provide 5/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 5L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 5L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 5;
|
||||
cinfo->_min_DCT_v_scaled_size = 5;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 6) {
|
||||
/* Provide 6/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 6L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 6L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 6;
|
||||
cinfo->_min_DCT_v_scaled_size = 6;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 7) {
|
||||
/* Provide 7/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 7L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 7L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 7;
|
||||
cinfo->_min_DCT_v_scaled_size = 7;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 8L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 8L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 8;
|
||||
cinfo->_min_DCT_v_scaled_size = 8;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 9) {
|
||||
/* Provide 9/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 9L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 9L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 9;
|
||||
cinfo->_min_DCT_v_scaled_size = 9;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 10) {
|
||||
/* Provide 10/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 10L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 10L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 10;
|
||||
cinfo->_min_DCT_v_scaled_size = 10;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 11) {
|
||||
/* Provide 11/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 11L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 11L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 11;
|
||||
cinfo->_min_DCT_v_scaled_size = 11;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 12) {
|
||||
/* Provide 12/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 12L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 12L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 12;
|
||||
cinfo->_min_DCT_v_scaled_size = 12;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 13) {
|
||||
/* Provide 13/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 13L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 13L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 13;
|
||||
cinfo->_min_DCT_v_scaled_size = 13;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 14) {
|
||||
/* Provide 14/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 14L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 14L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 14;
|
||||
cinfo->_min_DCT_v_scaled_size = 14;
|
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 15) {
|
||||
/* Provide 15/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 15L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 15L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 15;
|
||||
cinfo->_min_DCT_v_scaled_size = 15;
|
||||
} else {
|
||||
/* Provide 16/block_size scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width * 16L, (long)DCTSIZE);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height * 16L, (long)DCTSIZE);
|
||||
cinfo->_min_DCT_h_scaled_size = 16;
|
||||
cinfo->_min_DCT_v_scaled_size = 16;
|
||||
}
|
||||
|
||||
/* Recompute dimensions of components */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
compptr->_DCT_h_scaled_size = cinfo->_min_DCT_h_scaled_size;
|
||||
compptr->_DCT_v_scaled_size = cinfo->_min_DCT_v_scaled_size;
|
||||
}
|
||||
} else
|
||||
#endif /* !IDCT_SCALING_SUPPORTED */
|
||||
{
|
||||
/* Hardwire it to "no scaling" */
|
||||
cinfo->output_width = cinfo->image_width;
|
||||
cinfo->output_height = cinfo->image_height;
|
||||
/* jdinput.c has already initialized DCT_scaled_size,
|
||||
* and has computed unscaled downsampled_width and downsampled_height.
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Compute output image dimensions and related values.
|
||||
* NOTE: this is exported for possible use by application.
|
||||
* Hence it mustn't do anything that can't be done twice.
|
||||
* Also note that it may be called before the master module is initialized!
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_calc_output_dimensions(j_decompress_ptr cinfo)
|
||||
/* Do computations that are needed before master selection phase */
|
||||
{
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
#endif
|
||||
|
||||
/* Prevent application from calling me at wrong times */
|
||||
if (cinfo->global_state != DSTATE_READY)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* Compute core output image dimensions and DCT scaling choices. */
|
||||
jpeg_core_output_dimensions(cinfo);
|
||||
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
|
||||
if (!cinfo->master->lossless) {
|
||||
/* In selecting the actual DCT scaling for each component, we try to
|
||||
* scale up the chroma components via IDCT scaling rather than upsampling.
|
||||
* This saves time if the upsampler gets to use 1:1 scaling.
|
||||
* Note this code adapts subsampling ratios which are powers of 2.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
int ssize = cinfo->_min_DCT_scaled_size;
|
||||
while (ssize < DCTSIZE &&
|
||||
((cinfo->max_h_samp_factor * cinfo->_min_DCT_scaled_size) %
|
||||
(compptr->h_samp_factor * ssize * 2) == 0) &&
|
||||
((cinfo->max_v_samp_factor * cinfo->_min_DCT_scaled_size) %
|
||||
(compptr->v_samp_factor * ssize * 2) == 0)) {
|
||||
ssize = ssize * 2;
|
||||
}
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = ssize;
|
||||
#else
|
||||
compptr->DCT_scaled_size = ssize;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Recompute downsampled dimensions of components;
|
||||
* application needs to know these if using raw downsampled data.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Size in samples, after IDCT scaling */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_width *
|
||||
(long)(compptr->h_samp_factor *
|
||||
compptr->_DCT_scaled_size),
|
||||
(long)(cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long)cinfo->image_height *
|
||||
(long)(compptr->v_samp_factor *
|
||||
compptr->_DCT_scaled_size),
|
||||
(long)(cinfo->max_v_samp_factor * DCTSIZE));
|
||||
}
|
||||
} else
|
||||
#endif /* IDCT_SCALING_SUPPORTED */
|
||||
{
|
||||
/* Hardwire it to "no scaling" */
|
||||
cinfo->output_width = cinfo->image_width;
|
||||
cinfo->output_height = cinfo->image_height;
|
||||
/* jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
|
||||
* and has computed unscaled downsampled_width and downsampled_height.
|
||||
*/
|
||||
}
|
||||
|
||||
/* Report number of components in selected colorspace. */
|
||||
/* Probably this should be in the color conversion module... */
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->out_color_components = 1;
|
||||
break;
|
||||
case JCS_RGB:
|
||||
case JCS_EXT_RGB:
|
||||
case JCS_EXT_RGBX:
|
||||
case JCS_EXT_BGR:
|
||||
case JCS_EXT_BGRX:
|
||||
case JCS_EXT_XBGR:
|
||||
case JCS_EXT_XRGB:
|
||||
case JCS_EXT_RGBA:
|
||||
case JCS_EXT_BGRA:
|
||||
case JCS_EXT_ABGR:
|
||||
case JCS_EXT_ARGB:
|
||||
cinfo->out_color_components = rgb_pixelsize[cinfo->out_color_space];
|
||||
break;
|
||||
case JCS_YCbCr:
|
||||
case JCS_RGB565:
|
||||
cinfo->out_color_components = 3;
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
cinfo->out_color_components = 4;
|
||||
break;
|
||||
default: /* else must be same colorspace as in file */
|
||||
cinfo->out_color_components = cinfo->num_components;
|
||||
break;
|
||||
}
|
||||
cinfo->output_components = (cinfo->quantize_colors ? 1 :
|
||||
cinfo->out_color_components);
|
||||
|
||||
/* See if upsampler will want to emit more than one row at a time */
|
||||
if (use_merged_upsample(cinfo))
|
||||
cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
|
||||
else
|
||||
cinfo->rec_outbuf_height = 1;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Several decompression processes need to range-limit values to the range
|
||||
* 0..MAXJSAMPLE; the input value may fall somewhat outside this range
|
||||
* due to noise introduced by quantization, roundoff error, etc. These
|
||||
* processes are inner loops and need to be as fast as possible. On most
|
||||
* machines, particularly CPUs with pipelines or instruction prefetch,
|
||||
* a (subscript-check-less) C table lookup
|
||||
* x = sample_range_limit[x];
|
||||
* is faster than explicit tests
|
||||
* if (x < 0) x = 0;
|
||||
* else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
|
||||
* These processes all use a common table prepared by the routine below.
|
||||
*
|
||||
* For most steps we can mathematically guarantee that the initial value
|
||||
* of x is within MAXJSAMPLE+1 of the legal range, so a table running from
|
||||
* -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
|
||||
* limiting step (just after the IDCT), a wildly out-of-range value is
|
||||
* possible if the input data is corrupt. To avoid any chance of indexing
|
||||
* off the end of memory and getting a bad-pointer trap, we perform the
|
||||
* post-IDCT limiting thus:
|
||||
* x = range_limit[x & MASK];
|
||||
* where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
|
||||
* samples. Under normal circumstances this is more than enough range and
|
||||
* a correct output will be generated; with bogus input data the mask will
|
||||
* cause wraparound, and we will safely generate a bogus-but-in-range output.
|
||||
* For the post-IDCT step, we want to convert the data from signed to unsigned
|
||||
* representation by adding CENTERJSAMPLE at the same time that we limit it.
|
||||
* So the post-IDCT limiting table ends up looking like this:
|
||||
* CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
|
||||
* MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
|
||||
* 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
|
||||
* 0,1,...,CENTERJSAMPLE-1
|
||||
* Negative inputs select values from the upper half of the table after
|
||||
* masking.
|
||||
*
|
||||
* We can save some space by overlapping the start of the post-IDCT table
|
||||
* with the simpler range limiting table. The post-IDCT table begins at
|
||||
* sample_range_limit + CENTERJSAMPLE.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
prepare_range_limit_table(j_decompress_ptr cinfo)
|
||||
/* Allocate and fill in the sample_range_limit table */
|
||||
{
|
||||
JSAMPLE *table;
|
||||
J12SAMPLE *table12;
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
J16SAMPLE *table16;
|
||||
#endif
|
||||
int i;
|
||||
|
||||
if (cinfo->data_precision <= 8) {
|
||||
table = (JSAMPLE *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(5 * (MAXJSAMPLE + 1) + CENTERJSAMPLE) * sizeof(JSAMPLE));
|
||||
table += (MAXJSAMPLE + 1); /* allow negative subscripts of simple table */
|
||||
cinfo->sample_range_limit = table;
|
||||
/* First segment of "simple" table: limit[x] = 0 for x < 0 */
|
||||
memset(table - (MAXJSAMPLE + 1), 0, (MAXJSAMPLE + 1) * sizeof(JSAMPLE));
|
||||
/* Main part of "simple" table: limit[x] = x */
|
||||
for (i = 0; i <= MAXJSAMPLE; i++)
|
||||
table[i] = (JSAMPLE)i;
|
||||
table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
|
||||
/* End of simple table, rest of first half of post-IDCT table */
|
||||
for (i = CENTERJSAMPLE; i < 2 * (MAXJSAMPLE + 1); i++)
|
||||
table[i] = MAXJSAMPLE;
|
||||
/* Second half of post-IDCT table */
|
||||
memset(table + (2 * (MAXJSAMPLE + 1)), 0,
|
||||
(2 * (MAXJSAMPLE + 1) - CENTERJSAMPLE) * sizeof(JSAMPLE));
|
||||
memcpy(table + (4 * (MAXJSAMPLE + 1) - CENTERJSAMPLE),
|
||||
cinfo->sample_range_limit, CENTERJSAMPLE * sizeof(JSAMPLE));
|
||||
} else if (cinfo->data_precision <= 12) {
|
||||
table12 = (J12SAMPLE *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(5 * (MAXJ12SAMPLE + 1) + CENTERJ12SAMPLE) *
|
||||
sizeof(J12SAMPLE));
|
||||
table12 += (MAXJ12SAMPLE + 1); /* allow negative subscripts of simple
|
||||
table */
|
||||
cinfo->sample_range_limit = (JSAMPLE *)table12;
|
||||
/* First segment of "simple" table: limit[x] = 0 for x < 0 */
|
||||
memset(table12 - (MAXJ12SAMPLE + 1), 0,
|
||||
(MAXJ12SAMPLE + 1) * sizeof(J12SAMPLE));
|
||||
/* Main part of "simple" table: limit[x] = x */
|
||||
for (i = 0; i <= MAXJ12SAMPLE; i++)
|
||||
table12[i] = (J12SAMPLE)i;
|
||||
table12 += CENTERJ12SAMPLE; /* Point to where post-IDCT table starts */
|
||||
/* End of simple table, rest of first half of post-IDCT table */
|
||||
for (i = CENTERJ12SAMPLE; i < 2 * (MAXJ12SAMPLE + 1); i++)
|
||||
table12[i] = MAXJ12SAMPLE;
|
||||
/* Second half of post-IDCT table */
|
||||
memset(table12 + (2 * (MAXJ12SAMPLE + 1)), 0,
|
||||
(2 * (MAXJ12SAMPLE + 1) - CENTERJ12SAMPLE) * sizeof(J12SAMPLE));
|
||||
memcpy(table12 + (4 * (MAXJ12SAMPLE + 1) - CENTERJ12SAMPLE),
|
||||
cinfo->sample_range_limit, CENTERJ12SAMPLE * sizeof(J12SAMPLE));
|
||||
} else {
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
table16 = (J16SAMPLE *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(5 * (MAXJ16SAMPLE + 1) + CENTERJ16SAMPLE) *
|
||||
sizeof(J16SAMPLE));
|
||||
table16 += (MAXJ16SAMPLE + 1); /* allow negative subscripts of simple
|
||||
table */
|
||||
cinfo->sample_range_limit = (JSAMPLE *)table16;
|
||||
/* First segment of "simple" table: limit[x] = 0 for x < 0 */
|
||||
memset(table16 - (MAXJ16SAMPLE + 1), 0,
|
||||
(MAXJ16SAMPLE + 1) * sizeof(J16SAMPLE));
|
||||
/* Main part of "simple" table: limit[x] = x */
|
||||
for (i = 0; i <= MAXJ16SAMPLE; i++)
|
||||
table16[i] = (J16SAMPLE)i;
|
||||
table16 += CENTERJ16SAMPLE; /* Point to where post-IDCT table starts */
|
||||
/* End of simple table, rest of first half of post-IDCT table */
|
||||
for (i = CENTERJ16SAMPLE; i < 2 * (MAXJ16SAMPLE + 1); i++)
|
||||
table16[i] = MAXJ16SAMPLE;
|
||||
/* Second half of post-IDCT table */
|
||||
memset(table16 + (2 * (MAXJ16SAMPLE + 1)), 0,
|
||||
(2 * (MAXJ16SAMPLE + 1) - CENTERJ16SAMPLE) * sizeof(J16SAMPLE));
|
||||
memcpy(table16 + (4 * (MAXJ16SAMPLE + 1) - CENTERJ16SAMPLE),
|
||||
cinfo->sample_range_limit, CENTERJ16SAMPLE * sizeof(J16SAMPLE));
|
||||
#else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of decompression modules.
|
||||
* This is done once at jpeg_start_decompress time. We determine
|
||||
* which modules will be used and give them appropriate initialization calls.
|
||||
* We also initialize the decompressor input side to begin consuming data.
|
||||
*
|
||||
* Since jpeg_read_header has finished, we know what is in the SOF
|
||||
* and (first) SOS markers. We also have all the application parameter
|
||||
* settings.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
master_selection(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
boolean use_c_buffer;
|
||||
long samplesperrow;
|
||||
JDIMENSION jd_samplesperrow;
|
||||
|
||||
/* Disable IDCT scaling and raw (downsampled) data output in lossless mode.
|
||||
* IDCT scaling is not useful in lossless mode, and it must be disabled in
|
||||
* order to properly calculate the output dimensions. Raw data output isn't
|
||||
* particularly useful without subsampling and has not been tested in
|
||||
* lossless mode.
|
||||
*/
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
cinfo->raw_data_out = FALSE;
|
||||
cinfo->scale_num = cinfo->scale_denom = 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Initialize dimensions and other stuff */
|
||||
jpeg_calc_output_dimensions(cinfo);
|
||||
prepare_range_limit_table(cinfo);
|
||||
|
||||
/* Width of an output scanline must be representable as JDIMENSION. */
|
||||
samplesperrow = (long)cinfo->output_width *
|
||||
(long)cinfo->out_color_components;
|
||||
jd_samplesperrow = (JDIMENSION)samplesperrow;
|
||||
if ((long)jd_samplesperrow != samplesperrow)
|
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
||||
|
||||
/* Initialize my private state */
|
||||
master->pass_number = 0;
|
||||
master->using_merged_upsample = use_merged_upsample(cinfo);
|
||||
|
||||
/* Color quantizer selection */
|
||||
master->quantizer_1pass = NULL;
|
||||
master->quantizer_2pass = NULL;
|
||||
/* No mode changes if not using buffered-image mode. */
|
||||
if (!cinfo->quantize_colors || !cinfo->buffered_image) {
|
||||
cinfo->enable_1pass_quant = FALSE;
|
||||
cinfo->enable_external_quant = FALSE;
|
||||
cinfo->enable_2pass_quant = FALSE;
|
||||
}
|
||||
if (cinfo->quantize_colors) {
|
||||
if (cinfo->raw_data_out)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
/* 2-pass quantizer only works in 3-component color space. */
|
||||
if (cinfo->out_color_components != 3 ||
|
||||
cinfo->out_color_space == JCS_RGB565) {
|
||||
cinfo->enable_1pass_quant = TRUE;
|
||||
cinfo->enable_external_quant = FALSE;
|
||||
cinfo->enable_2pass_quant = FALSE;
|
||||
cinfo->colormap = NULL;
|
||||
} else if (cinfo->colormap != NULL) {
|
||||
cinfo->enable_external_quant = TRUE;
|
||||
} else if (cinfo->two_pass_quantize) {
|
||||
cinfo->enable_2pass_quant = TRUE;
|
||||
} else {
|
||||
cinfo->enable_1pass_quant = TRUE;
|
||||
}
|
||||
|
||||
if (cinfo->enable_1pass_quant) {
|
||||
#ifdef QUANT_1PASS_SUPPORTED
|
||||
if (cinfo->data_precision == 8)
|
||||
jinit_1pass_quantizer(cinfo);
|
||||
else if (cinfo->data_precision == 12)
|
||||
j12init_1pass_quantizer(cinfo);
|
||||
else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
master->quantizer_1pass = cinfo->cquantize;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* We use the 2-pass code to map to external colormaps. */
|
||||
if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
if (cinfo->data_precision == 8)
|
||||
jinit_2pass_quantizer(cinfo);
|
||||
else if (cinfo->data_precision == 12)
|
||||
j12init_2pass_quantizer(cinfo);
|
||||
else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
master->quantizer_2pass = cinfo->cquantize;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
}
|
||||
/* If both quantizers are initialized, the 2-pass one is left active;
|
||||
* this is necessary for starting with quantization to an external map.
|
||||
*/
|
||||
}
|
||||
|
||||
/* Post-processing: in particular, color conversion first */
|
||||
if (!cinfo->raw_data_out) {
|
||||
if (master->using_merged_upsample) {
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
if (cinfo->data_precision == 8)
|
||||
jinit_merged_upsampler(cinfo); /* does color conversion too */
|
||||
else if (cinfo->data_precision == 12)
|
||||
j12init_merged_upsampler(cinfo); /* does color conversion too */
|
||||
else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
if (cinfo->data_precision <= 8) {
|
||||
jinit_color_deconverter(cinfo);
|
||||
jinit_upsampler(cinfo);
|
||||
} else if (cinfo->data_precision <= 12) {
|
||||
j12init_color_deconverter(cinfo);
|
||||
j12init_upsampler(cinfo);
|
||||
} else {
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
j16init_color_deconverter(cinfo);
|
||||
j16init_upsampler(cinfo);
|
||||
#else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
if (cinfo->data_precision <= 8)
|
||||
jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
|
||||
else if (cinfo->data_precision <= 12)
|
||||
j12init_d_post_controller(cinfo, cinfo->enable_2pass_quant);
|
||||
else
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
j16init_d_post_controller(cinfo, cinfo->enable_2pass_quant);
|
||||
#else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (cinfo->master->lossless) {
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
/* Prediction, sample undifferencing, point transform, and sample size
|
||||
* scaling
|
||||
*/
|
||||
if (cinfo->data_precision <= 8)
|
||||
jinit_lossless_decompressor(cinfo);
|
||||
else if (cinfo->data_precision <= 12)
|
||||
j12init_lossless_decompressor(cinfo);
|
||||
else
|
||||
j16init_lossless_decompressor(cinfo);
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
} else {
|
||||
jinit_lhuff_decoder(cinfo);
|
||||
}
|
||||
|
||||
/* Initialize principal buffer controllers. */
|
||||
use_c_buffer = cinfo->inputctl->has_multiple_scans ||
|
||||
cinfo->buffered_image;
|
||||
if (cinfo->data_precision <= 8)
|
||||
jinit_d_diff_controller(cinfo, use_c_buffer);
|
||||
else if (cinfo->data_precision <= 12)
|
||||
j12init_d_diff_controller(cinfo, use_c_buffer);
|
||||
else
|
||||
j16init_d_diff_controller(cinfo, use_c_buffer);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
/* Inverse DCT */
|
||||
if (cinfo->data_precision == 8)
|
||||
jinit_inverse_dct(cinfo);
|
||||
else if (cinfo->data_precision == 12)
|
||||
j12init_inverse_dct(cinfo);
|
||||
else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
#ifdef D_ARITH_CODING_SUPPORTED
|
||||
jinit_arith_decoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
#endif
|
||||
} else {
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef D_PROGRESSIVE_SUPPORTED
|
||||
jinit_phuff_decoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else
|
||||
jinit_huff_decoder(cinfo);
|
||||
}
|
||||
|
||||
/* Initialize principal buffer controllers. */
|
||||
use_c_buffer = cinfo->inputctl->has_multiple_scans ||
|
||||
cinfo->buffered_image;
|
||||
if (cinfo->data_precision == 12)
|
||||
j12init_d_coef_controller(cinfo, use_c_buffer);
|
||||
else
|
||||
jinit_d_coef_controller(cinfo, use_c_buffer);
|
||||
}
|
||||
|
||||
if (!cinfo->raw_data_out) {
|
||||
if (cinfo->data_precision <= 8)
|
||||
jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
else if (cinfo->data_precision <= 12)
|
||||
j12init_d_main_controller(cinfo,
|
||||
FALSE /* never need full buffer here */);
|
||||
else
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
j16init_d_main_controller(cinfo,
|
||||
FALSE /* never need full buffer here */);
|
||||
#else
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr)cinfo);
|
||||
|
||||
/* Initialize input side of decompressor to consume first scan. */
|
||||
(*cinfo->inputctl->start_input_pass) (cinfo);
|
||||
|
||||
/* Set the first and last iMCU columns to decompress from single-scan images.
|
||||
* By default, decompress all of the iMCU columns.
|
||||
*/
|
||||
cinfo->master->first_iMCU_col = 0;
|
||||
cinfo->master->last_iMCU_col = cinfo->MCUs_per_row - 1;
|
||||
cinfo->master->last_good_iMCU_row = 0;
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
/* If jpeg_start_decompress will read the whole file, initialize
|
||||
* progress monitoring appropriately. The input step is counted
|
||||
* as one pass.
|
||||
*/
|
||||
if (cinfo->progress != NULL && !cinfo->buffered_image &&
|
||||
cinfo->inputctl->has_multiple_scans) {
|
||||
int nscans;
|
||||
/* Estimate number of scans to set pass_limit. */
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
|
||||
nscans = 2 + 3 * cinfo->num_components;
|
||||
} else {
|
||||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
|
||||
nscans = cinfo->num_components;
|
||||
}
|
||||
cinfo->progress->pass_counter = 0L;
|
||||
cinfo->progress->pass_limit = (long)cinfo->total_iMCU_rows * nscans;
|
||||
cinfo->progress->completed_passes = 0;
|
||||
cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
|
||||
/* Count the input pass as done */
|
||||
master->pass_number++;
|
||||
}
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup.
|
||||
* This is called at the beginning of each output pass. We determine which
|
||||
* modules will be active during this pass and give them appropriate
|
||||
* start_pass calls. We also set is_dummy_pass to indicate whether this
|
||||
* is a "real" output pass or a dummy pass for color quantization.
|
||||
* (In the latter case, jdapistd.c will crank the pass to completion.)
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
prepare_for_output_pass(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
|
||||
if (master->pub.is_dummy_pass) {
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
/* Final pass of 2-pass quantization */
|
||||
master->pub.is_dummy_pass = FALSE;
|
||||
(*cinfo->cquantize->start_pass) (cinfo, FALSE);
|
||||
(*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
} else {
|
||||
if (cinfo->quantize_colors && cinfo->colormap == NULL) {
|
||||
/* Select new quantization method */
|
||||
if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
|
||||
cinfo->cquantize = master->quantizer_2pass;
|
||||
master->pub.is_dummy_pass = TRUE;
|
||||
} else if (cinfo->enable_1pass_quant) {
|
||||
cinfo->cquantize = master->quantizer_1pass;
|
||||
} else {
|
||||
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||
}
|
||||
}
|
||||
(*cinfo->idct->start_pass) (cinfo);
|
||||
(*cinfo->coef->start_output_pass) (cinfo);
|
||||
if (!cinfo->raw_data_out) {
|
||||
if (!master->using_merged_upsample)
|
||||
(*cinfo->cconvert->start_pass) (cinfo);
|
||||
(*cinfo->upsample->start_pass) (cinfo);
|
||||
if (cinfo->quantize_colors)
|
||||
(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
|
||||
(*cinfo->post->start_pass) (cinfo,
|
||||
(master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
}
|
||||
}
|
||||
|
||||
/* Set up progress monitor's pass info if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->completed_passes = master->pass_number;
|
||||
cinfo->progress->total_passes = master->pass_number +
|
||||
(master->pub.is_dummy_pass ? 2 : 1);
|
||||
/* In buffered-image mode, we assume one more output pass if EOI not
|
||||
* yet reached, but no more passes if EOI has been reached.
|
||||
*/
|
||||
if (cinfo->buffered_image && !cinfo->inputctl->eoi_reached) {
|
||||
cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of an output pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_output_pass(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
|
||||
if (cinfo->quantize_colors)
|
||||
(*cinfo->cquantize->finish_pass) (cinfo);
|
||||
master->pass_number++;
|
||||
}
|
||||
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
/*
|
||||
* Switch to a new external colormap between output passes.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_new_colormap(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
|
||||
/* Prevent application from calling me at wrong times */
|
||||
if (cinfo->global_state != DSTATE_BUFIMAGE)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (cinfo->quantize_colors && cinfo->enable_external_quant &&
|
||||
cinfo->colormap != NULL) {
|
||||
/* Select 2-pass quantizer for external colormap use */
|
||||
cinfo->cquantize = master->quantizer_2pass;
|
||||
/* Notify quantizer of colormap change */
|
||||
(*cinfo->cquantize->new_color_map) (cinfo);
|
||||
master->pub.is_dummy_pass = FALSE; /* just in case */
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||
}
|
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize master decompression control and select active modules.
|
||||
* This is performed at the start of jpeg_start_decompress.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_master_decompress(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
|
||||
master->pub.prepare_for_output_pass = prepare_for_output_pass;
|
||||
master->pub.finish_output_pass = finish_output_pass;
|
||||
|
||||
master->pub.is_dummy_pass = FALSE;
|
||||
master->pub.jinit_upsampler_no_alloc = FALSE;
|
||||
|
||||
master_selection(cinfo);
|
||||
}
|
||||
28
thirdparty/libjpeg-turbo/src/jdmaster.h
vendored
Normal file
28
thirdparty/libjpeg-turbo/src/jdmaster.h
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
/*
|
||||
* jdmaster.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1995, Thomas G. Lane.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains the master control structure for the JPEG decompressor.
|
||||
*/
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_decomp_master pub; /* public fields */
|
||||
|
||||
int pass_number; /* # of passes completed */
|
||||
|
||||
boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
|
||||
|
||||
/* Saved references to initialized quantizer modules,
|
||||
* in case we need to switch modes.
|
||||
*/
|
||||
struct jpeg_color_quantizer *quantizer_1pass;
|
||||
struct jpeg_color_quantizer *quantizer_2pass;
|
||||
} my_decomp_master;
|
||||
|
||||
typedef my_decomp_master *my_master_ptr;
|
||||
594
thirdparty/libjpeg-turbo/src/jdmerge.c
vendored
Normal file
594
thirdparty/libjpeg-turbo/src/jdmerge.c
vendored
Normal file
@@ -0,0 +1,594 @@
|
||||
/*
|
||||
* jdmerge.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||||
* Copyright (C) 2009, 2011, 2014-2015, 2020, 2022, D. R. Commander.
|
||||
* Copyright (C) 2013, Linaro Limited.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains code for merged upsampling/color conversion.
|
||||
*
|
||||
* This file combines functions from jdsample.c and jdcolor.c;
|
||||
* read those files first to understand what's going on.
|
||||
*
|
||||
* When the chroma components are to be upsampled by simple replication
|
||||
* (ie, box filtering), we can save some work in color conversion by
|
||||
* calculating all the output pixels corresponding to a pair of chroma
|
||||
* samples at one time. In the conversion equations
|
||||
* R = Y + K1 * Cr
|
||||
* G = Y + K2 * Cb + K3 * Cr
|
||||
* B = Y + K4 * Cb
|
||||
* only the Y term varies among the group of pixels corresponding to a pair
|
||||
* of chroma samples, so the rest of the terms can be calculated just once.
|
||||
* At typical sampling ratios, this eliminates half or three-quarters of the
|
||||
* multiplications needed for color conversion.
|
||||
*
|
||||
* This file currently provides implementations for the following cases:
|
||||
* YCbCr => RGB color conversion only.
|
||||
* Sampling ratios of 2h1v or 2h2v.
|
||||
* No scaling needed at upsample time.
|
||||
* Corner-aligned (non-CCIR601) sampling alignment.
|
||||
* Other special cases could be added, but in most applications these are
|
||||
* the only common cases. (For uncommon cases we fall back on the more
|
||||
* general code in jdsample.c and jdcolor.c.)
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdmerge.h"
|
||||
#include "jsimd.h"
|
||||
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define ONE_HALF ((JLONG)1 << (SCALEBITS - 1))
|
||||
#define FIX(x) ((JLONG)((x) * (1L << SCALEBITS) + 0.5))
|
||||
|
||||
|
||||
/* Include inline routines for colorspace extensions */
|
||||
|
||||
#include "jdmrgext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_PIXELSIZE
|
||||
|
||||
#define RGB_RED EXT_RGB_RED
|
||||
#define RGB_GREEN EXT_RGB_GREEN
|
||||
#define RGB_BLUE EXT_RGB_BLUE
|
||||
#define RGB_PIXELSIZE EXT_RGB_PIXELSIZE
|
||||
#define h2v1_merged_upsample_internal extrgb_h2v1_merged_upsample_internal
|
||||
#define h2v2_merged_upsample_internal extrgb_h2v2_merged_upsample_internal
|
||||
#include "jdmrgext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef h2v1_merged_upsample_internal
|
||||
#undef h2v2_merged_upsample_internal
|
||||
|
||||
#define RGB_RED EXT_RGBX_RED
|
||||
#define RGB_GREEN EXT_RGBX_GREEN
|
||||
#define RGB_BLUE EXT_RGBX_BLUE
|
||||
#define RGB_ALPHA 3
|
||||
#define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE
|
||||
#define h2v1_merged_upsample_internal extrgbx_h2v1_merged_upsample_internal
|
||||
#define h2v2_merged_upsample_internal extrgbx_h2v2_merged_upsample_internal
|
||||
#include "jdmrgext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_ALPHA
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef h2v1_merged_upsample_internal
|
||||
#undef h2v2_merged_upsample_internal
|
||||
|
||||
#define RGB_RED EXT_BGR_RED
|
||||
#define RGB_GREEN EXT_BGR_GREEN
|
||||
#define RGB_BLUE EXT_BGR_BLUE
|
||||
#define RGB_PIXELSIZE EXT_BGR_PIXELSIZE
|
||||
#define h2v1_merged_upsample_internal extbgr_h2v1_merged_upsample_internal
|
||||
#define h2v2_merged_upsample_internal extbgr_h2v2_merged_upsample_internal
|
||||
#include "jdmrgext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef h2v1_merged_upsample_internal
|
||||
#undef h2v2_merged_upsample_internal
|
||||
|
||||
#define RGB_RED EXT_BGRX_RED
|
||||
#define RGB_GREEN EXT_BGRX_GREEN
|
||||
#define RGB_BLUE EXT_BGRX_BLUE
|
||||
#define RGB_ALPHA 3
|
||||
#define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE
|
||||
#define h2v1_merged_upsample_internal extbgrx_h2v1_merged_upsample_internal
|
||||
#define h2v2_merged_upsample_internal extbgrx_h2v2_merged_upsample_internal
|
||||
#include "jdmrgext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_ALPHA
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef h2v1_merged_upsample_internal
|
||||
#undef h2v2_merged_upsample_internal
|
||||
|
||||
#define RGB_RED EXT_XBGR_RED
|
||||
#define RGB_GREEN EXT_XBGR_GREEN
|
||||
#define RGB_BLUE EXT_XBGR_BLUE
|
||||
#define RGB_ALPHA 0
|
||||
#define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE
|
||||
#define h2v1_merged_upsample_internal extxbgr_h2v1_merged_upsample_internal
|
||||
#define h2v2_merged_upsample_internal extxbgr_h2v2_merged_upsample_internal
|
||||
#include "jdmrgext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_ALPHA
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef h2v1_merged_upsample_internal
|
||||
#undef h2v2_merged_upsample_internal
|
||||
|
||||
#define RGB_RED EXT_XRGB_RED
|
||||
#define RGB_GREEN EXT_XRGB_GREEN
|
||||
#define RGB_BLUE EXT_XRGB_BLUE
|
||||
#define RGB_ALPHA 0
|
||||
#define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE
|
||||
#define h2v1_merged_upsample_internal extxrgb_h2v1_merged_upsample_internal
|
||||
#define h2v2_merged_upsample_internal extxrgb_h2v2_merged_upsample_internal
|
||||
#include "jdmrgext.c"
|
||||
#undef RGB_RED
|
||||
#undef RGB_GREEN
|
||||
#undef RGB_BLUE
|
||||
#undef RGB_ALPHA
|
||||
#undef RGB_PIXELSIZE
|
||||
#undef h2v1_merged_upsample_internal
|
||||
#undef h2v2_merged_upsample_internal
|
||||
|
||||
|
||||
/*
|
||||
* Initialize tables for YCC->RGB colorspace conversion.
|
||||
* This is taken directly from jdcolor.c; see that file for more info.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
build_ycc_rgb_table(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
int i;
|
||||
JLONG x;
|
||||
SHIFT_TEMPS
|
||||
|
||||
upsample->Cr_r_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(_MAXJSAMPLE + 1) * sizeof(int));
|
||||
upsample->Cb_b_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(_MAXJSAMPLE + 1) * sizeof(int));
|
||||
upsample->Cr_g_tab = (JLONG *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(_MAXJSAMPLE + 1) * sizeof(JLONG));
|
||||
upsample->Cb_g_tab = (JLONG *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(_MAXJSAMPLE + 1) * sizeof(JLONG));
|
||||
|
||||
for (i = 0, x = -_CENTERJSAMPLE; i <= _MAXJSAMPLE; i++, x++) {
|
||||
/* i is the actual input pixel value, in the range 0.._MAXJSAMPLE */
|
||||
/* The Cb or Cr value we are thinking of is x = i - _CENTERJSAMPLE */
|
||||
/* Cr=>R value is nearest int to 1.40200 * x */
|
||||
upsample->Cr_r_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cb=>B value is nearest int to 1.77200 * x */
|
||||
upsample->Cb_b_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cr=>G value is scaled-up -0.71414 * x */
|
||||
upsample->Cr_g_tab[i] = (-FIX(0.71414)) * x;
|
||||
/* Cb=>G value is scaled-up -0.34414 * x */
|
||||
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||
upsample->Cb_g_tab[i] = (-FIX(0.34414)) * x + ONE_HALF;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an upsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_merged_upsample(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
|
||||
/* Mark the spare buffer empty */
|
||||
upsample->spare_full = FALSE;
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
upsample->rows_to_go = cinfo->output_height;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion).
|
||||
*
|
||||
* The control routine just handles the row buffering considerations.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
merged_2v_upsample(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail, _JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
|
||||
/* 2:1 vertical sampling case: may need a spare row. */
|
||||
{
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
_JSAMPROW work_ptrs[2];
|
||||
JDIMENSION num_rows; /* number of rows returned to caller */
|
||||
|
||||
if (upsample->spare_full) {
|
||||
/* If we have a spare row saved from a previous cycle, just return it. */
|
||||
JDIMENSION size = upsample->out_row_width;
|
||||
if (cinfo->out_color_space == JCS_RGB565)
|
||||
size = cinfo->output_width * 2;
|
||||
_jcopy_sample_rows(&upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
|
||||
1, size);
|
||||
num_rows = 1;
|
||||
upsample->spare_full = FALSE;
|
||||
} else {
|
||||
/* Figure number of rows to return to caller. */
|
||||
num_rows = 2;
|
||||
/* Not more than the distance to the end of the image. */
|
||||
if (num_rows > upsample->rows_to_go)
|
||||
num_rows = upsample->rows_to_go;
|
||||
/* And not more than what the client can accept: */
|
||||
out_rows_avail -= *out_row_ctr;
|
||||
if (num_rows > out_rows_avail)
|
||||
num_rows = out_rows_avail;
|
||||
/* Create output pointer array for upsampler. */
|
||||
work_ptrs[0] = output_buf[*out_row_ctr];
|
||||
if (num_rows > 1) {
|
||||
work_ptrs[1] = output_buf[*out_row_ctr + 1];
|
||||
} else {
|
||||
work_ptrs[1] = upsample->spare_row;
|
||||
upsample->spare_full = TRUE;
|
||||
}
|
||||
/* Now do the upsampling. */
|
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
|
||||
}
|
||||
|
||||
/* Adjust counts */
|
||||
*out_row_ctr += num_rows;
|
||||
upsample->rows_to_go -= num_rows;
|
||||
/* When the buffer is emptied, declare this input row group consumed */
|
||||
if (!upsample->spare_full)
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
merged_1v_upsample(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail, _JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
|
||||
/* 1:1 vertical sampling case: much easier, never need a spare row. */
|
||||
{
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
|
||||
/* Just do the upsampling. */
|
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
|
||||
output_buf + *out_row_ctr);
|
||||
/* Adjust counts */
|
||||
(*out_row_ctr)++;
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by the control routines to do
|
||||
* the actual upsampling/conversion. One row group is processed per call.
|
||||
*
|
||||
* Note: since we may be writing directly into application-supplied buffers,
|
||||
* we have to be honest about the output width; we can't assume the buffer
|
||||
* has been rounded up to an even width.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_merged_upsample(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr, _JSAMPARRAY output_buf)
|
||||
{
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_EXT_RGB:
|
||||
extrgb_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
case JCS_EXT_RGBX:
|
||||
case JCS_EXT_RGBA:
|
||||
extrgbx_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
case JCS_EXT_BGR:
|
||||
extbgr_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
case JCS_EXT_BGRX:
|
||||
case JCS_EXT_BGRA:
|
||||
extbgrx_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
case JCS_EXT_XBGR:
|
||||
case JCS_EXT_ABGR:
|
||||
extxbgr_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
case JCS_EXT_XRGB:
|
||||
case JCS_EXT_ARGB:
|
||||
extxrgb_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
default:
|
||||
h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_merged_upsample(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr, _JSAMPARRAY output_buf)
|
||||
{
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_EXT_RGB:
|
||||
extrgb_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
case JCS_EXT_RGBX:
|
||||
case JCS_EXT_RGBA:
|
||||
extrgbx_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
case JCS_EXT_BGR:
|
||||
extbgr_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
case JCS_EXT_BGRX:
|
||||
case JCS_EXT_BGRA:
|
||||
extbgrx_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
case JCS_EXT_XBGR:
|
||||
case JCS_EXT_ABGR:
|
||||
extxbgr_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
case JCS_EXT_XRGB:
|
||||
case JCS_EXT_ARGB:
|
||||
extxrgb_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
default:
|
||||
h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* RGB565 conversion
|
||||
*/
|
||||
|
||||
#define PACK_SHORT_565_LE(r, g, b) \
|
||||
((((r) << 8) & 0xF800) | (((g) << 3) & 0x7E0) | ((b) >> 3))
|
||||
#define PACK_SHORT_565_BE(r, g, b) \
|
||||
(((r) & 0xF8) | ((g) >> 5) | (((g) << 11) & 0xE000) | (((b) << 5) & 0x1F00))
|
||||
|
||||
#define PACK_TWO_PIXELS_LE(l, r) ((r << 16) | l)
|
||||
#define PACK_TWO_PIXELS_BE(l, r) ((l << 16) | r)
|
||||
|
||||
#define WRITE_TWO_PIXELS_LE(addr, pixels) { \
|
||||
((INT16 *)(addr))[0] = (INT16)(pixels); \
|
||||
((INT16 *)(addr))[1] = (INT16)((pixels) >> 16); \
|
||||
}
|
||||
#define WRITE_TWO_PIXELS_BE(addr, pixels) { \
|
||||
((INT16 *)(addr))[1] = (INT16)(pixels); \
|
||||
((INT16 *)(addr))[0] = (INT16)((pixels) >> 16); \
|
||||
}
|
||||
|
||||
#define DITHER_565_R(r, dither) ((r) + ((dither) & 0xFF))
|
||||
#define DITHER_565_G(g, dither) ((g) + (((dither) & 0xFF) >> 1))
|
||||
#define DITHER_565_B(b, dither) ((b) + ((dither) & 0xFF))
|
||||
|
||||
|
||||
/* Declarations for ordered dithering
|
||||
*
|
||||
* We use a 4x4 ordered dither array packed into 32 bits. This array is
|
||||
* sufficient for dithering RGB888 to RGB565.
|
||||
*/
|
||||
|
||||
#define DITHER_MASK 0x3
|
||||
#define DITHER_ROTATE(x) ((((x) & 0xFF) << 24) | (((x) >> 8) & 0x00FFFFFF))
|
||||
static const JLONG dither_matrix[4] = {
|
||||
0x0008020A,
|
||||
0x0C040E06,
|
||||
0x030B0109,
|
||||
0x0F070D05
|
||||
};
|
||||
|
||||
|
||||
/* Include inline routines for RGB565 conversion */
|
||||
|
||||
#define PACK_SHORT_565 PACK_SHORT_565_LE
|
||||
#define PACK_TWO_PIXELS PACK_TWO_PIXELS_LE
|
||||
#define WRITE_TWO_PIXELS WRITE_TWO_PIXELS_LE
|
||||
#define h2v1_merged_upsample_565_internal h2v1_merged_upsample_565_le
|
||||
#define h2v1_merged_upsample_565D_internal h2v1_merged_upsample_565D_le
|
||||
#define h2v2_merged_upsample_565_internal h2v2_merged_upsample_565_le
|
||||
#define h2v2_merged_upsample_565D_internal h2v2_merged_upsample_565D_le
|
||||
#include "jdmrg565.c"
|
||||
#undef PACK_SHORT_565
|
||||
#undef PACK_TWO_PIXELS
|
||||
#undef WRITE_TWO_PIXELS
|
||||
#undef h2v1_merged_upsample_565_internal
|
||||
#undef h2v1_merged_upsample_565D_internal
|
||||
#undef h2v2_merged_upsample_565_internal
|
||||
#undef h2v2_merged_upsample_565D_internal
|
||||
|
||||
#define PACK_SHORT_565 PACK_SHORT_565_BE
|
||||
#define PACK_TWO_PIXELS PACK_TWO_PIXELS_BE
|
||||
#define WRITE_TWO_PIXELS WRITE_TWO_PIXELS_BE
|
||||
#define h2v1_merged_upsample_565_internal h2v1_merged_upsample_565_be
|
||||
#define h2v1_merged_upsample_565D_internal h2v1_merged_upsample_565D_be
|
||||
#define h2v2_merged_upsample_565_internal h2v2_merged_upsample_565_be
|
||||
#define h2v2_merged_upsample_565D_internal h2v2_merged_upsample_565D_be
|
||||
#include "jdmrg565.c"
|
||||
#undef PACK_SHORT_565
|
||||
#undef PACK_TWO_PIXELS
|
||||
#undef WRITE_TWO_PIXELS
|
||||
#undef h2v1_merged_upsample_565_internal
|
||||
#undef h2v1_merged_upsample_565D_internal
|
||||
#undef h2v2_merged_upsample_565_internal
|
||||
#undef h2v2_merged_upsample_565D_internal
|
||||
|
||||
|
||||
static INLINE boolean is_big_endian(void)
|
||||
{
|
||||
int test_value = 1;
|
||||
if (*(char *)&test_value != 1)
|
||||
return TRUE;
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_merged_upsample_565(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr, _JSAMPARRAY output_buf)
|
||||
{
|
||||
if (is_big_endian())
|
||||
h2v1_merged_upsample_565_be(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
else
|
||||
h2v1_merged_upsample_565_le(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_merged_upsample_565D(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr, _JSAMPARRAY output_buf)
|
||||
{
|
||||
if (is_big_endian())
|
||||
h2v1_merged_upsample_565D_be(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
else
|
||||
h2v1_merged_upsample_565D_le(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_merged_upsample_565(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr, _JSAMPARRAY output_buf)
|
||||
{
|
||||
if (is_big_endian())
|
||||
h2v2_merged_upsample_565_be(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
else
|
||||
h2v2_merged_upsample_565_le(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_merged_upsample_565D(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr, _JSAMPARRAY output_buf)
|
||||
{
|
||||
if (is_big_endian())
|
||||
h2v2_merged_upsample_565D_be(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
else
|
||||
h2v2_merged_upsample_565D_le(cinfo, input_buf, in_row_group_ctr,
|
||||
output_buf);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for merged upsampling/color conversion.
|
||||
*
|
||||
* NB: this is called under the conditions determined by use_merged_upsample()
|
||||
* in jdmaster.c. That routine MUST correspond to the actual capabilities
|
||||
* of this module; no safety checks are made here.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_merged_upsampler(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_merged_upsample_ptr upsample;
|
||||
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
upsample = (my_merged_upsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_merged_upsampler));
|
||||
cinfo->upsample = (struct jpeg_upsampler *)upsample;
|
||||
upsample->pub.start_pass = start_pass_merged_upsample;
|
||||
upsample->pub.need_context_rows = FALSE;
|
||||
|
||||
upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
|
||||
|
||||
if (cinfo->max_v_samp_factor == 2) {
|
||||
upsample->pub._upsample = merged_2v_upsample;
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_h2v2_merged_upsample())
|
||||
upsample->upmethod = jsimd_h2v2_merged_upsample;
|
||||
else
|
||||
#endif
|
||||
upsample->upmethod = h2v2_merged_upsample;
|
||||
if (cinfo->out_color_space == JCS_RGB565) {
|
||||
if (cinfo->dither_mode != JDITHER_NONE) {
|
||||
upsample->upmethod = h2v2_merged_upsample_565D;
|
||||
} else {
|
||||
upsample->upmethod = h2v2_merged_upsample_565;
|
||||
}
|
||||
}
|
||||
/* Allocate a spare row buffer */
|
||||
upsample->spare_row = (_JSAMPROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(size_t)(upsample->out_row_width * sizeof(_JSAMPLE)));
|
||||
} else {
|
||||
upsample->pub._upsample = merged_1v_upsample;
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_h2v1_merged_upsample())
|
||||
upsample->upmethod = jsimd_h2v1_merged_upsample;
|
||||
else
|
||||
#endif
|
||||
upsample->upmethod = h2v1_merged_upsample;
|
||||
if (cinfo->out_color_space == JCS_RGB565) {
|
||||
if (cinfo->dither_mode != JDITHER_NONE) {
|
||||
upsample->upmethod = h2v1_merged_upsample_565D;
|
||||
} else {
|
||||
upsample->upmethod = h2v1_merged_upsample_565;
|
||||
}
|
||||
}
|
||||
/* No spare row needed */
|
||||
upsample->spare_row = NULL;
|
||||
}
|
||||
|
||||
build_ycc_rgb_table(cinfo);
|
||||
}
|
||||
|
||||
#endif /* UPSAMPLE_MERGING_SUPPORTED */
|
||||
48
thirdparty/libjpeg-turbo/src/jdmerge.h
vendored
Normal file
48
thirdparty/libjpeg-turbo/src/jdmerge.h
vendored
Normal file
@@ -0,0 +1,48 @@
|
||||
/*
|
||||
* jdmerge.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2020, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jpeglib.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_upsampler pub; /* public fields */
|
||||
|
||||
/* Pointer to routine to do actual upsampling/conversion of one row group */
|
||||
void (*upmethod) (j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr, _JSAMPARRAY output_buf);
|
||||
|
||||
/* Private state for YCC->RGB conversion */
|
||||
int *Cr_r_tab; /* => table for Cr to R conversion */
|
||||
int *Cb_b_tab; /* => table for Cb to B conversion */
|
||||
JLONG *Cr_g_tab; /* => table for Cr to G conversion */
|
||||
JLONG *Cb_g_tab; /* => table for Cb to G conversion */
|
||||
|
||||
/* For 2:1 vertical sampling, we produce two output rows at a time.
|
||||
* We need a "spare" row buffer to hold the second output row if the
|
||||
* application provides just a one-row buffer; we also use the spare
|
||||
* to discard the dummy last row if the image height is odd.
|
||||
*/
|
||||
_JSAMPROW spare_row;
|
||||
boolean spare_full; /* T if spare buffer is occupied */
|
||||
|
||||
JDIMENSION out_row_width; /* samples per output row */
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||
} my_merged_upsampler;
|
||||
|
||||
typedef my_merged_upsampler *my_merged_upsample_ptr;
|
||||
|
||||
#endif /* UPSAMPLE_MERGING_SUPPORTED */
|
||||
355
thirdparty/libjpeg-turbo/src/jdmrg565.c
vendored
Normal file
355
thirdparty/libjpeg-turbo/src/jdmrg565.c
vendored
Normal file
@@ -0,0 +1,355 @@
|
||||
/*
|
||||
* jdmrg565.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2013, Linaro Limited.
|
||||
* Copyright (C) 2014-2015, 2018, 2020, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains code for merged upsampling/color conversion.
|
||||
*/
|
||||
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
h2v1_merged_upsample_565_internal(j_decompress_ptr cinfo,
|
||||
_JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
_JSAMPARRAY output_buf)
|
||||
{
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register _JSAMPROW outptr;
|
||||
_JSAMPROW inptr0, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
int *Crrtab = upsample->Cr_r_tab;
|
||||
int *Cbbtab = upsample->Cb_b_tab;
|
||||
JLONG *Crgtab = upsample->Cr_g_tab;
|
||||
JLONG *Cbgtab = upsample->Cb_g_tab;
|
||||
unsigned int r, g, b;
|
||||
JLONG rgb;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr0 = input_buf[0][in_row_group_ctr];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr = output_buf[0];
|
||||
|
||||
/* Loop for each pair of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = *inptr1++;
|
||||
cr = *inptr2++;
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
|
||||
/* Fetch 2 Y values and emit 2 pixels */
|
||||
y = *inptr0++;
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
|
||||
y = *inptr0++;
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
|
||||
|
||||
WRITE_TWO_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = *inptr1;
|
||||
cr = *inptr2;
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = *inptr0;
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
h2v1_merged_upsample_565D_internal(j_decompress_ptr cinfo,
|
||||
_JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
_JSAMPARRAY output_buf)
|
||||
{
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register _JSAMPROW outptr;
|
||||
_JSAMPROW inptr0, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
int *Crrtab = upsample->Cr_r_tab;
|
||||
int *Cbbtab = upsample->Cb_b_tab;
|
||||
JLONG *Crgtab = upsample->Cr_g_tab;
|
||||
JLONG *Cbgtab = upsample->Cb_g_tab;
|
||||
JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK];
|
||||
unsigned int r, g, b;
|
||||
JLONG rgb;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr0 = input_buf[0][in_row_group_ctr];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr = output_buf[0];
|
||||
|
||||
/* Loop for each pair of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = *inptr1++;
|
||||
cr = *inptr2++;
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
|
||||
/* Fetch 2 Y values and emit 2 pixels */
|
||||
y = *inptr0++;
|
||||
r = range_limit[DITHER_565_R(y + cred, d0)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
|
||||
y = *inptr0++;
|
||||
r = range_limit[DITHER_565_R(y + cred, d0)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
|
||||
|
||||
WRITE_TWO_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = *inptr1;
|
||||
cr = *inptr2;
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = *inptr0;
|
||||
r = range_limit[DITHER_565_R(y + cred, d0)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d0)];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr = (INT16)rgb;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
h2v2_merged_upsample_565_internal(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
_JSAMPARRAY output_buf)
|
||||
{
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register _JSAMPROW outptr0, outptr1;
|
||||
_JSAMPROW inptr00, inptr01, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
int *Crrtab = upsample->Cr_r_tab;
|
||||
int *Cbbtab = upsample->Cb_b_tab;
|
||||
JLONG *Crgtab = upsample->Cr_g_tab;
|
||||
JLONG *Cbgtab = upsample->Cb_g_tab;
|
||||
unsigned int r, g, b;
|
||||
JLONG rgb;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr00 = input_buf[0][in_row_group_ctr * 2];
|
||||
inptr01 = input_buf[0][in_row_group_ctr * 2 + 1];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr0 = output_buf[0];
|
||||
outptr1 = output_buf[1];
|
||||
|
||||
/* Loop for each group of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = *inptr1++;
|
||||
cr = *inptr2++;
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
|
||||
/* Fetch 4 Y values and emit 4 pixels */
|
||||
y = *inptr00++;
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
|
||||
y = *inptr00++;
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
|
||||
|
||||
WRITE_TWO_PIXELS(outptr0, rgb);
|
||||
outptr0 += 4;
|
||||
|
||||
y = *inptr01++;
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
|
||||
y = *inptr01++;
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
|
||||
|
||||
WRITE_TWO_PIXELS(outptr1, rgb);
|
||||
outptr1 += 4;
|
||||
}
|
||||
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = *inptr1;
|
||||
cr = *inptr2;
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
|
||||
y = *inptr00;
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr0 = (INT16)rgb;
|
||||
|
||||
y = *inptr01;
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr1 = (INT16)rgb;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
h2v2_merged_upsample_565D_internal(j_decompress_ptr cinfo,
|
||||
_JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
_JSAMPARRAY output_buf)
|
||||
{
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register _JSAMPROW outptr0, outptr1;
|
||||
_JSAMPROW inptr00, inptr01, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
int *Crrtab = upsample->Cr_r_tab;
|
||||
int *Cbbtab = upsample->Cb_b_tab;
|
||||
JLONG *Crgtab = upsample->Cr_g_tab;
|
||||
JLONG *Cbgtab = upsample->Cb_g_tab;
|
||||
JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK];
|
||||
JLONG d1 = dither_matrix[(cinfo->output_scanline + 1) & DITHER_MASK];
|
||||
unsigned int r, g, b;
|
||||
JLONG rgb;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr00 = input_buf[0][in_row_group_ctr * 2];
|
||||
inptr01 = input_buf[0][in_row_group_ctr * 2 + 1];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr0 = output_buf[0];
|
||||
outptr1 = output_buf[1];
|
||||
|
||||
/* Loop for each group of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = *inptr1++;
|
||||
cr = *inptr2++;
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
|
||||
/* Fetch 4 Y values and emit 4 pixels */
|
||||
y = *inptr00++;
|
||||
r = range_limit[DITHER_565_R(y + cred, d0)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
|
||||
y = *inptr00++;
|
||||
r = range_limit[DITHER_565_R(y + cred, d0)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
|
||||
|
||||
WRITE_TWO_PIXELS(outptr0, rgb);
|
||||
outptr0 += 4;
|
||||
|
||||
y = *inptr01++;
|
||||
r = range_limit[DITHER_565_R(y + cred, d1)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d1)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d1)];
|
||||
d1 = DITHER_ROTATE(d1);
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
|
||||
y = *inptr01++;
|
||||
r = range_limit[DITHER_565_R(y + cred, d1)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d1)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d1)];
|
||||
d1 = DITHER_ROTATE(d1);
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b));
|
||||
|
||||
WRITE_TWO_PIXELS(outptr1, rgb);
|
||||
outptr1 += 4;
|
||||
}
|
||||
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = *inptr1;
|
||||
cr = *inptr2;
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
|
||||
y = *inptr00;
|
||||
r = range_limit[DITHER_565_R(y + cred, d0)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d0)];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr0 = (INT16)rgb;
|
||||
|
||||
y = *inptr01;
|
||||
r = range_limit[DITHER_565_R(y + cred, d1)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d1)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d1)];
|
||||
rgb = PACK_SHORT_565(r, g, b);
|
||||
*(INT16 *)outptr1 = (INT16)rgb;
|
||||
}
|
||||
}
|
||||
184
thirdparty/libjpeg-turbo/src/jdmrgext.c
vendored
Normal file
184
thirdparty/libjpeg-turbo/src/jdmrgext.c
vendored
Normal file
@@ -0,0 +1,184 @@
|
||||
/*
|
||||
* jdmrgext.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2011, 2015, 2020, 2022-2023, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains code for merged upsampling/color conversion.
|
||||
*/
|
||||
|
||||
|
||||
/* This file is included by jdmerge.c */
|
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
|
||||
*/
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
h2v1_merged_upsample_internal(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
_JSAMPARRAY output_buf)
|
||||
{
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register _JSAMPROW outptr;
|
||||
_JSAMPROW inptr0, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
int *Crrtab = upsample->Cr_r_tab;
|
||||
int *Cbbtab = upsample->Cb_b_tab;
|
||||
JLONG *Crgtab = upsample->Cr_g_tab;
|
||||
JLONG *Cbgtab = upsample->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr0 = input_buf[0][in_row_group_ctr];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr = output_buf[0];
|
||||
/* Loop for each pair of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = *inptr1++;
|
||||
cr = *inptr2++;
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 2 Y values and emit 2 pixels */
|
||||
y = *inptr0++;
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
#ifdef RGB_ALPHA
|
||||
outptr[RGB_ALPHA] = _MAXJSAMPLE;
|
||||
#endif
|
||||
outptr += RGB_PIXELSIZE;
|
||||
y = *inptr0++;
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
#ifdef RGB_ALPHA
|
||||
outptr[RGB_ALPHA] = _MAXJSAMPLE;
|
||||
#endif
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = *inptr1;
|
||||
cr = *inptr2;
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = *inptr0;
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
#ifdef RGB_ALPHA
|
||||
outptr[RGB_ALPHA] = _MAXJSAMPLE;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
|
||||
*/
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
h2v2_merged_upsample_internal(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
_JSAMPARRAY output_buf)
|
||||
{
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register _JSAMPROW outptr0, outptr1;
|
||||
_JSAMPROW inptr00, inptr01, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
int *Crrtab = upsample->Cr_r_tab;
|
||||
int *Cbbtab = upsample->Cb_b_tab;
|
||||
JLONG *Crgtab = upsample->Cr_g_tab;
|
||||
JLONG *Cbgtab = upsample->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr00 = input_buf[0][in_row_group_ctr * 2];
|
||||
inptr01 = input_buf[0][in_row_group_ctr * 2 + 1];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr0 = output_buf[0];
|
||||
outptr1 = output_buf[1];
|
||||
/* Loop for each group of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = *inptr1++;
|
||||
cr = *inptr2++;
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 4 Y values and emit 4 pixels */
|
||||
y = *inptr00++;
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
#ifdef RGB_ALPHA
|
||||
outptr0[RGB_ALPHA] = _MAXJSAMPLE;
|
||||
#endif
|
||||
outptr0 += RGB_PIXELSIZE;
|
||||
y = *inptr00++;
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
#ifdef RGB_ALPHA
|
||||
outptr0[RGB_ALPHA] = _MAXJSAMPLE;
|
||||
#endif
|
||||
outptr0 += RGB_PIXELSIZE;
|
||||
y = *inptr01++;
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
#ifdef RGB_ALPHA
|
||||
outptr1[RGB_ALPHA] = _MAXJSAMPLE;
|
||||
#endif
|
||||
outptr1 += RGB_PIXELSIZE;
|
||||
y = *inptr01++;
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
#ifdef RGB_ALPHA
|
||||
outptr1[RGB_ALPHA] = _MAXJSAMPLE;
|
||||
#endif
|
||||
outptr1 += RGB_PIXELSIZE;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = *inptr1;
|
||||
cr = *inptr2;
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = *inptr00;
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
#ifdef RGB_ALPHA
|
||||
outptr0[RGB_ALPHA] = _MAXJSAMPLE;
|
||||
#endif
|
||||
y = *inptr01;
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
#ifdef RGB_ALPHA
|
||||
outptr1[RGB_ALPHA] = _MAXJSAMPLE;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
681
thirdparty/libjpeg-turbo/src/jdphuff.c
vendored
Normal file
681
thirdparty/libjpeg-turbo/src/jdphuff.c
vendored
Normal file
@@ -0,0 +1,681 @@
|
||||
/*
|
||||
* jdphuff.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1995-1997, Thomas G. Lane.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2015-2016, 2018-2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains Huffman entropy decoding routines for progressive JPEG.
|
||||
*
|
||||
* Much of the complexity here has to do with supporting input suspension.
|
||||
* If the data source module demands suspension, we want to be able to back
|
||||
* up to the start of the current MCU. To do this, we copy state variables
|
||||
* into local working storage, and update them back to the permanent
|
||||
* storage only upon successful completion of an MCU.
|
||||
*
|
||||
* NOTE: All referenced figures are from
|
||||
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdhuff.h" /* Declarations shared with jd*huff.c */
|
||||
#include <limits.h>
|
||||
|
||||
|
||||
#ifdef D_PROGRESSIVE_SUPPORTED
|
||||
|
||||
/*
|
||||
* Expanded entropy decoder object for progressive Huffman decoding.
|
||||
*
|
||||
* The savable_state subrecord contains fields that change within an MCU,
|
||||
* but must not be updated permanently until we complete the MCU.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
} savable_state;
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_decoder pub; /* public fields */
|
||||
|
||||
/* These fields are loaded into local variables at start of each MCU.
|
||||
* In case of suspension, we exit WITHOUT updating them.
|
||||
*/
|
||||
bitread_perm_state bitstate; /* Bit buffer at start of MCU */
|
||||
savable_state saved; /* Other state at start of MCU */
|
||||
|
||||
/* These fields are NOT loaded into local working state. */
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
|
||||
/* Pointers to derived tables (these workspaces have image lifespan) */
|
||||
d_derived_tbl *derived_tbls[NUM_HUFF_TBLS];
|
||||
|
||||
d_derived_tbl *ac_derived_tbl; /* active table during an AC scan */
|
||||
} phuff_entropy_decoder;
|
||||
|
||||
typedef phuff_entropy_decoder *phuff_entropy_ptr;
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(boolean) decode_mcu_DC_first(j_decompress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data);
|
||||
METHODDEF(boolean) decode_mcu_AC_first(j_decompress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data);
|
||||
METHODDEF(boolean) decode_mcu_DC_refine(j_decompress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data);
|
||||
METHODDEF(boolean) decode_mcu_AC_refine(j_decompress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data);
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a Huffman-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_phuff_decoder(j_decompress_ptr cinfo)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy;
|
||||
boolean is_DC_band, bad;
|
||||
int ci, coefi, tbl;
|
||||
d_derived_tbl **pdtbl;
|
||||
int *coef_bit_ptr, *prev_coef_bit_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
is_DC_band = (cinfo->Ss == 0);
|
||||
|
||||
/* Validate scan parameters */
|
||||
bad = FALSE;
|
||||
if (is_DC_band) {
|
||||
if (cinfo->Se != 0)
|
||||
bad = TRUE;
|
||||
} else {
|
||||
/* need not check Ss/Se < 0 since they came from unsigned bytes */
|
||||
if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
|
||||
bad = TRUE;
|
||||
/* AC scans may have only one component */
|
||||
if (cinfo->comps_in_scan != 1)
|
||||
bad = TRUE;
|
||||
}
|
||||
if (cinfo->Ah != 0) {
|
||||
/* Successive approximation refinement scan: must have Al = Ah-1. */
|
||||
if (cinfo->Al != cinfo->Ah - 1)
|
||||
bad = TRUE;
|
||||
}
|
||||
if (cinfo->Al > 13) /* need not check for < 0 */
|
||||
bad = TRUE;
|
||||
/* Arguably the maximum Al value should be less than 13 for 8-bit precision,
|
||||
* but the spec doesn't say so, and we try to be liberal about what we
|
||||
* accept. Note: large Al values could result in out-of-range DC
|
||||
* coefficients during early scans, leading to bizarre displays due to
|
||||
* overflows in the IDCT math. But we won't crash.
|
||||
*/
|
||||
if (bad)
|
||||
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
|
||||
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
|
||||
/* Update progression status, and verify that scan order is legal.
|
||||
* Note that inter-scan inconsistencies are treated as warnings
|
||||
* not fatal errors ... not clear if this is right way to behave.
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
int cindex = cinfo->cur_comp_info[ci]->component_index;
|
||||
coef_bit_ptr = &cinfo->coef_bits[cindex][0];
|
||||
prev_coef_bit_ptr = &cinfo->coef_bits[cindex + cinfo->num_components][0];
|
||||
if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
|
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
|
||||
for (coefi = MIN(cinfo->Ss, 1); coefi <= MAX(cinfo->Se, 9); coefi++) {
|
||||
if (cinfo->input_scan_number > 1)
|
||||
prev_coef_bit_ptr[coefi] = coef_bit_ptr[coefi];
|
||||
else
|
||||
prev_coef_bit_ptr[coefi] = 0;
|
||||
}
|
||||
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
|
||||
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
|
||||
if (cinfo->Ah != expected)
|
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
|
||||
coef_bit_ptr[coefi] = cinfo->Al;
|
||||
}
|
||||
}
|
||||
|
||||
/* Select MCU decoding routine */
|
||||
if (cinfo->Ah == 0) {
|
||||
if (is_DC_band)
|
||||
entropy->pub.decode_mcu = decode_mcu_DC_first;
|
||||
else
|
||||
entropy->pub.decode_mcu = decode_mcu_AC_first;
|
||||
} else {
|
||||
if (is_DC_band)
|
||||
entropy->pub.decode_mcu = decode_mcu_DC_refine;
|
||||
else
|
||||
entropy->pub.decode_mcu = decode_mcu_AC_refine;
|
||||
}
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Make sure requested tables are present, and compute derived tables.
|
||||
* We may build same derived table more than once, but it's not expensive.
|
||||
*/
|
||||
if (is_DC_band) {
|
||||
if (cinfo->Ah == 0) { /* DC refinement needs no table */
|
||||
tbl = compptr->dc_tbl_no;
|
||||
pdtbl = (d_derived_tbl **)(entropy->derived_tbls) + tbl;
|
||||
jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, pdtbl);
|
||||
}
|
||||
} else {
|
||||
tbl = compptr->ac_tbl_no;
|
||||
pdtbl = (d_derived_tbl **)(entropy->derived_tbls) + tbl;
|
||||
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, pdtbl);
|
||||
/* remember the single active table */
|
||||
entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
|
||||
}
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->saved.last_dc_val[ci] = 0;
|
||||
}
|
||||
|
||||
/* Initialize bitread state variables */
|
||||
entropy->bitstate.bits_left = 0;
|
||||
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
|
||||
entropy->pub.insufficient_data = FALSE;
|
||||
|
||||
/* Initialize private state variables */
|
||||
entropy->saved.EOBRUN = 0;
|
||||
|
||||
/* Initialize restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Figure F.12: extend sign bit.
|
||||
* On some machines, a shift and add will be faster than a table lookup.
|
||||
*/
|
||||
|
||||
#define AVOID_TABLES
|
||||
#ifdef AVOID_TABLES
|
||||
|
||||
#define NEG_1 ((unsigned)-1)
|
||||
#define HUFF_EXTEND(x, s) \
|
||||
((x) < (1 << ((s) - 1)) ? (x) + (((NEG_1) << (s)) + 1) : (x))
|
||||
|
||||
#else
|
||||
|
||||
#define HUFF_EXTEND(x, s) \
|
||||
((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
|
||||
|
||||
static const int extend_test[16] = { /* entry n is 2**(n-1) */
|
||||
0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
|
||||
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
|
||||
};
|
||||
|
||||
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
|
||||
0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
|
||||
((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
|
||||
((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
|
||||
((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
|
||||
};
|
||||
|
||||
#endif /* AVOID_TABLES */
|
||||
|
||||
|
||||
/*
|
||||
* Check for a restart marker & resynchronize decoder.
|
||||
* Returns FALSE if must suspend.
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
process_restart(j_decompress_ptr cinfo)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy;
|
||||
int ci;
|
||||
|
||||
/* Throw away any unused bits remaining in bit buffer; */
|
||||
/* include any full bytes in next_marker's count of discarded bytes */
|
||||
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
|
||||
entropy->bitstate.bits_left = 0;
|
||||
|
||||
/* Advance past the RSTn marker */
|
||||
if (!(*cinfo->marker->read_restart_marker) (cinfo))
|
||||
return FALSE;
|
||||
|
||||
/* Re-initialize DC predictions to 0 */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
||||
entropy->saved.last_dc_val[ci] = 0;
|
||||
/* Re-init EOB run count, too */
|
||||
entropy->saved.EOBRUN = 0;
|
||||
|
||||
/* Reset restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
|
||||
/* Reset out-of-data flag, unless read_restart_marker left us smack up
|
||||
* against a marker. In that case we will end up treating the next data
|
||||
* segment as empty, and we can avoid producing bogus output pixels by
|
||||
* leaving the flag set.
|
||||
*/
|
||||
if (cinfo->unread_marker == 0)
|
||||
entropy->pub.insufficient_data = FALSE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Huffman MCU decoding.
|
||||
* Each of these routines decodes and returns one MCU's worth of
|
||||
* Huffman-compressed coefficients.
|
||||
* The coefficients are reordered from zigzag order into natural array order,
|
||||
* but are not dequantized.
|
||||
*
|
||||
* The i'th block of the MCU is stored into the block pointed to by
|
||||
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
|
||||
*
|
||||
* We return FALSE if data source requested suspension. In that case no
|
||||
* changes have been made to permanent state. (Exception: some output
|
||||
* coefficients may already have been assigned. This is harmless for
|
||||
* spectral selection, since we'll just re-assign them on the next call.
|
||||
* Successive approximation AC refinement has to be more careful, however.)
|
||||
*/
|
||||
|
||||
/*
|
||||
* MCU decoding for DC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_DC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy;
|
||||
int Al = cinfo->Al;
|
||||
register int s, r;
|
||||
int blkn, ci;
|
||||
JBLOCKROW block;
|
||||
BITREAD_STATE_VARS;
|
||||
savable_state state;
|
||||
d_derived_tbl *tbl;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Process restart marker if needed; may have to suspend */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (!process_restart(cinfo))
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* If we've run out of data, just leave the MCU set to zeroes.
|
||||
* This way, we return uniform gray for the remainder of the segment.
|
||||
*/
|
||||
if (!entropy->pub.insufficient_data) {
|
||||
|
||||
/* Load up working state */
|
||||
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
|
||||
state = entropy->saved;
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
tbl = entropy->derived_tbls[compptr->dc_tbl_no];
|
||||
|
||||
/* Decode a single block's worth of coefficients */
|
||||
|
||||
/* Section F.2.2.1: decode the DC coefficient difference */
|
||||
HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
|
||||
if (s) {
|
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
||||
r = GET_BITS(s);
|
||||
s = HUFF_EXTEND(r, s);
|
||||
}
|
||||
|
||||
/* Convert DC difference to actual value, update last_dc_val */
|
||||
if ((state.last_dc_val[ci] >= 0 &&
|
||||
s > INT_MAX - state.last_dc_val[ci]) ||
|
||||
(state.last_dc_val[ci] < 0 && s < INT_MIN - state.last_dc_val[ci]))
|
||||
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
||||
s += state.last_dc_val[ci];
|
||||
state.last_dc_val[ci] = s;
|
||||
/* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
|
||||
(*block)[0] = (JCOEF)LEFT_SHIFT(s, Al);
|
||||
}
|
||||
|
||||
/* Completed MCU, so update state */
|
||||
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
|
||||
entropy->saved = state;
|
||||
}
|
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */
|
||||
if (cinfo->restart_interval)
|
||||
entropy->restarts_to_go--;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_AC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy;
|
||||
int Se = cinfo->Se;
|
||||
int Al = cinfo->Al;
|
||||
register int s, k, r;
|
||||
unsigned int EOBRUN;
|
||||
JBLOCKROW block;
|
||||
BITREAD_STATE_VARS;
|
||||
d_derived_tbl *tbl;
|
||||
|
||||
/* Process restart marker if needed; may have to suspend */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (!process_restart(cinfo))
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* If we've run out of data, just leave the MCU set to zeroes.
|
||||
* This way, we return uniform gray for the remainder of the segment.
|
||||
*/
|
||||
if (!entropy->pub.insufficient_data) {
|
||||
|
||||
/* Load up working state.
|
||||
* We can avoid loading/saving bitread state if in an EOB run.
|
||||
*/
|
||||
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
|
||||
|
||||
/* There is always only one block per MCU */
|
||||
|
||||
if (EOBRUN > 0) /* if it's a band of zeroes... */
|
||||
EOBRUN--; /* ...process it now (we do nothing) */
|
||||
else {
|
||||
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
|
||||
block = MCU_data[0];
|
||||
tbl = entropy->ac_derived_tbl;
|
||||
|
||||
for (k = cinfo->Ss; k <= Se; k++) {
|
||||
HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
|
||||
r = s >> 4;
|
||||
s &= 15;
|
||||
if (s) {
|
||||
k += r;
|
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
||||
r = GET_BITS(s);
|
||||
s = HUFF_EXTEND(r, s);
|
||||
/* Scale and output coefficient in natural (dezigzagged) order */
|
||||
(*block)[jpeg_natural_order[k]] = (JCOEF)LEFT_SHIFT(s, Al);
|
||||
} else {
|
||||
if (r == 15) { /* ZRL */
|
||||
k += 15; /* skip 15 zeroes in band */
|
||||
} else { /* EOBr, run length is 2^r + appended bits */
|
||||
EOBRUN = 1 << r;
|
||||
if (r) { /* EOBr, r > 0 */
|
||||
CHECK_BIT_BUFFER(br_state, r, return FALSE);
|
||||
r = GET_BITS(r);
|
||||
EOBRUN += r;
|
||||
}
|
||||
EOBRUN--; /* this band is processed at this moment */
|
||||
break; /* force end-of-band */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
|
||||
}
|
||||
|
||||
/* Completed MCU, so update state */
|
||||
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
|
||||
}
|
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */
|
||||
if (cinfo->restart_interval)
|
||||
entropy->restarts_to_go--;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for DC successive approximation refinement scan.
|
||||
* Note: we assume such scans can be multi-component, although the spec
|
||||
* is not very clear on the point.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_DC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy;
|
||||
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||
int blkn;
|
||||
JBLOCKROW block;
|
||||
BITREAD_STATE_VARS;
|
||||
|
||||
/* Process restart marker if needed; may have to suspend */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (!process_restart(cinfo))
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* Not worth the cycles to check insufficient_data here,
|
||||
* since we will not change the data anyway if we read zeroes.
|
||||
*/
|
||||
|
||||
/* Load up working state */
|
||||
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
|
||||
/* Encoded data is simply the next bit of the two's-complement DC value */
|
||||
CHECK_BIT_BUFFER(br_state, 1, return FALSE);
|
||||
if (GET_BITS(1))
|
||||
(*block)[0] |= p1;
|
||||
/* Note: since we use |=, repeating the assignment later is safe */
|
||||
}
|
||||
|
||||
/* Completed MCU, so update state */
|
||||
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
|
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */
|
||||
if (cinfo->restart_interval)
|
||||
entropy->restarts_to_go--;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_AC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy;
|
||||
int Se = cinfo->Se;
|
||||
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||
int m1 = (NEG_1) << cinfo->Al; /* -1 in the bit position being coded */
|
||||
register int s, k, r;
|
||||
unsigned int EOBRUN;
|
||||
JBLOCKROW block;
|
||||
JCOEFPTR thiscoef;
|
||||
BITREAD_STATE_VARS;
|
||||
d_derived_tbl *tbl;
|
||||
int num_newnz;
|
||||
int newnz_pos[DCTSIZE2];
|
||||
|
||||
/* Process restart marker if needed; may have to suspend */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (!process_restart(cinfo))
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* If we've run out of data, don't modify the MCU.
|
||||
*/
|
||||
if (!entropy->pub.insufficient_data) {
|
||||
|
||||
/* Load up working state */
|
||||
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
|
||||
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
|
||||
|
||||
/* There is always only one block per MCU */
|
||||
block = MCU_data[0];
|
||||
tbl = entropy->ac_derived_tbl;
|
||||
|
||||
/* If we are forced to suspend, we must undo the assignments to any newly
|
||||
* nonzero coefficients in the block, because otherwise we'd get confused
|
||||
* next time about which coefficients were already nonzero.
|
||||
* But we need not undo addition of bits to already-nonzero coefficients;
|
||||
* instead, we can test the current bit to see if we already did it.
|
||||
*/
|
||||
num_newnz = 0;
|
||||
|
||||
/* initialize coefficient loop counter to start of band */
|
||||
k = cinfo->Ss;
|
||||
|
||||
if (EOBRUN == 0) {
|
||||
for (; k <= Se; k++) {
|
||||
HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
|
||||
r = s >> 4;
|
||||
s &= 15;
|
||||
if (s) {
|
||||
if (s != 1) /* size of new coef should always be 1 */
|
||||
WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
|
||||
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
||||
if (GET_BITS(1))
|
||||
s = p1; /* newly nonzero coef is positive */
|
||||
else
|
||||
s = m1; /* newly nonzero coef is negative */
|
||||
} else {
|
||||
if (r != 15) {
|
||||
EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
|
||||
if (r) {
|
||||
CHECK_BIT_BUFFER(br_state, r, goto undoit);
|
||||
r = GET_BITS(r);
|
||||
EOBRUN += r;
|
||||
}
|
||||
break; /* rest of block is handled by EOB logic */
|
||||
}
|
||||
/* note s = 0 for processing ZRL */
|
||||
}
|
||||
/* Advance over already-nonzero coefs and r still-zero coefs,
|
||||
* appending correction bits to the nonzeroes. A correction bit is 1
|
||||
* if the absolute value of the coefficient must be increased.
|
||||
*/
|
||||
do {
|
||||
thiscoef = *block + jpeg_natural_order[k];
|
||||
if (*thiscoef != 0) {
|
||||
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
||||
if (GET_BITS(1)) {
|
||||
if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
|
||||
if (*thiscoef >= 0)
|
||||
*thiscoef += (JCOEF)p1;
|
||||
else
|
||||
*thiscoef += (JCOEF)m1;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (--r < 0)
|
||||
break; /* reached target zero coefficient */
|
||||
}
|
||||
k++;
|
||||
} while (k <= Se);
|
||||
if (s) {
|
||||
int pos = jpeg_natural_order[k];
|
||||
/* Output newly nonzero coefficient */
|
||||
(*block)[pos] = (JCOEF)s;
|
||||
/* Remember its position in case we have to suspend */
|
||||
newnz_pos[num_newnz++] = pos;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (EOBRUN > 0) {
|
||||
/* Scan any remaining coefficient positions after the end-of-band
|
||||
* (the last newly nonzero coefficient, if any). Append a correction
|
||||
* bit to each already-nonzero coefficient. A correction bit is 1
|
||||
* if the absolute value of the coefficient must be increased.
|
||||
*/
|
||||
for (; k <= Se; k++) {
|
||||
thiscoef = *block + jpeg_natural_order[k];
|
||||
if (*thiscoef != 0) {
|
||||
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
||||
if (GET_BITS(1)) {
|
||||
if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
|
||||
if (*thiscoef >= 0)
|
||||
*thiscoef += (JCOEF)p1;
|
||||
else
|
||||
*thiscoef += (JCOEF)m1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Count one block completed in EOB run */
|
||||
EOBRUN--;
|
||||
}
|
||||
|
||||
/* Completed MCU, so update state */
|
||||
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
|
||||
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
|
||||
}
|
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */
|
||||
if (cinfo->restart_interval)
|
||||
entropy->restarts_to_go--;
|
||||
|
||||
return TRUE;
|
||||
|
||||
undoit:
|
||||
/* Re-zero any output coefficients that we made newly nonzero */
|
||||
while (num_newnz > 0)
|
||||
(*block)[newnz_pos[--num_newnz]] = 0;
|
||||
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for progressive Huffman entropy decoding.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_phuff_decoder(j_decompress_ptr cinfo)
|
||||
{
|
||||
phuff_entropy_ptr entropy;
|
||||
int *coef_bit_ptr;
|
||||
int ci, i;
|
||||
|
||||
entropy = (phuff_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(phuff_entropy_decoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
|
||||
entropy->pub.start_pass = start_pass_phuff_decoder;
|
||||
|
||||
/* Mark derived tables unallocated */
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
entropy->derived_tbls[i] = NULL;
|
||||
}
|
||||
|
||||
/* Create progression status table */
|
||||
cinfo->coef_bits = (int (*)[DCTSIZE2])
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components * 2 * DCTSIZE2 *
|
||||
sizeof(int));
|
||||
coef_bit_ptr = &cinfo->coef_bits[0][0];
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
for (i = 0; i < DCTSIZE2; i++)
|
||||
*coef_bit_ptr++ = -1;
|
||||
}
|
||||
|
||||
#endif /* D_PROGRESSIVE_SUPPORTED */
|
||||
328
thirdparty/libjpeg-turbo/src/jdpostct.c
vendored
Normal file
328
thirdparty/libjpeg-turbo/src/jdpostct.c
vendored
Normal file
@@ -0,0 +1,328 @@
|
||||
/*
|
||||
* jdpostct.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2022-2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains the decompression postprocessing controller.
|
||||
* This controller manages the upsampling, color conversion, and color
|
||||
* quantization/reduction steps; specifically, it controls the buffering
|
||||
* between upsample/color conversion and color quantization/reduction.
|
||||
*
|
||||
* If no color quantization/reduction is required, then this module has no
|
||||
* work to do, and it just hands off to the upsample/color conversion code.
|
||||
* An integrated upsample/convert/quantize process would replace this module
|
||||
* entirely.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED)
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_post_controller pub; /* public fields */
|
||||
|
||||
/* Color quantization source buffer: this holds output data from
|
||||
* the upsample/color conversion step to be passed to the quantizer.
|
||||
* For two-pass color quantization, we need a full-image buffer;
|
||||
* for one-pass operation, a strip buffer is sufficient.
|
||||
*/
|
||||
jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
|
||||
_JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
|
||||
JDIMENSION strip_height; /* buffer size in rows */
|
||||
/* for two-pass mode only: */
|
||||
JDIMENSION starting_row; /* row # of first row in current strip */
|
||||
JDIMENSION next_row; /* index of next row to fill/empty in strip */
|
||||
} my_post_controller;
|
||||
|
||||
typedef my_post_controller *my_post_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
METHODDEF(void) post_process_1pass(j_decompress_ptr cinfo,
|
||||
_JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
_JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail);
|
||||
#endif
|
||||
#if defined(QUANT_2PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16
|
||||
METHODDEF(void) post_process_prepass(j_decompress_ptr cinfo,
|
||||
_JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
_JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail);
|
||||
METHODDEF(void) post_process_2pass(j_decompress_ptr cinfo,
|
||||
_JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
_JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail);
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_dpost(j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr)cinfo->post;
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
if (cinfo->quantize_colors) {
|
||||
/* Single-pass processing with color quantization. */
|
||||
post->pub._post_process_data = post_process_1pass;
|
||||
/* We could be doing buffered-image output before starting a 2-pass
|
||||
* color quantization; in that case, jinit_d_post_controller did not
|
||||
* allocate a strip buffer. Use the virtual-array buffer as workspace.
|
||||
*/
|
||||
if (post->buffer == NULL) {
|
||||
post->buffer = (_JSAMPARRAY)(*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr)cinfo, post->whole_image,
|
||||
(JDIMENSION)0, post->strip_height, TRUE);
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
/* For single-pass processing without color quantization,
|
||||
* I have no work to do; just call the upsampler directly.
|
||||
*/
|
||||
post->pub._post_process_data = cinfo->upsample->_upsample;
|
||||
}
|
||||
break;
|
||||
#if defined(QUANT_2PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
/* First pass of 2-pass quantization */
|
||||
if (post->whole_image == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
post->pub._post_process_data = post_process_prepass;
|
||||
break;
|
||||
case JBUF_CRANK_DEST:
|
||||
/* Second pass of 2-pass quantization */
|
||||
if (post->whole_image == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
post->pub._post_process_data = post_process_2pass;
|
||||
break;
|
||||
#endif /* defined(QUANT_2PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16 */
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
post->starting_row = post->next_row = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the one-pass (strip buffer) case.
|
||||
* This is used for color precision reduction as well as one-pass quantization.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
|
||||
METHODDEF(void)
|
||||
post_process_1pass(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail, _JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr)cinfo->post;
|
||||
JDIMENSION num_rows, max_rows;
|
||||
|
||||
/* Fill the buffer, but not more than what we can dump out in one go. */
|
||||
/* Note we rely on the upsampler to detect bottom of image. */
|
||||
max_rows = out_rows_avail - *out_row_ctr;
|
||||
if (max_rows > post->strip_height)
|
||||
max_rows = post->strip_height;
|
||||
num_rows = 0;
|
||||
(*cinfo->upsample->_upsample) (cinfo, input_buf, in_row_group_ctr,
|
||||
in_row_groups_avail, post->buffer, &num_rows,
|
||||
max_rows);
|
||||
/* Quantize and emit data. */
|
||||
(*cinfo->cquantize->_color_quantize) (cinfo, post->buffer,
|
||||
output_buf + *out_row_ctr,
|
||||
(int)num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(QUANT_2PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16
|
||||
|
||||
/*
|
||||
* Process some data in the first pass of 2-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
post_process_prepass(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail, _JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr)cinfo->post;
|
||||
JDIMENSION old_next_row, num_rows;
|
||||
|
||||
/* Reposition virtual buffer if at start of strip. */
|
||||
if (post->next_row == 0) {
|
||||
post->buffer = (_JSAMPARRAY)(*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr)cinfo, post->whole_image,
|
||||
post->starting_row, post->strip_height, TRUE);
|
||||
}
|
||||
|
||||
/* Upsample some data (up to a strip height's worth). */
|
||||
old_next_row = post->next_row;
|
||||
(*cinfo->upsample->_upsample) (cinfo, input_buf, in_row_group_ctr,
|
||||
in_row_groups_avail, post->buffer,
|
||||
&post->next_row, post->strip_height);
|
||||
|
||||
/* Allow quantizer to scan new data. No data is emitted, */
|
||||
/* but we advance out_row_ctr so outer loop can tell when we're done. */
|
||||
if (post->next_row > old_next_row) {
|
||||
num_rows = post->next_row - old_next_row;
|
||||
(*cinfo->cquantize->_color_quantize) (cinfo, post->buffer + old_next_row,
|
||||
(_JSAMPARRAY)NULL, (int)num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
}
|
||||
|
||||
/* Advance if we filled the strip. */
|
||||
if (post->next_row >= post->strip_height) {
|
||||
post->starting_row += post->strip_height;
|
||||
post->next_row = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the second pass of 2-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
post_process_2pass(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail, _JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr)cinfo->post;
|
||||
JDIMENSION num_rows, max_rows;
|
||||
|
||||
/* Reposition virtual buffer if at start of strip. */
|
||||
if (post->next_row == 0) {
|
||||
post->buffer = (_JSAMPARRAY)(*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr)cinfo, post->whole_image,
|
||||
post->starting_row, post->strip_height, FALSE);
|
||||
}
|
||||
|
||||
/* Determine number of rows to emit. */
|
||||
num_rows = post->strip_height - post->next_row; /* available in strip */
|
||||
max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
|
||||
if (num_rows > max_rows)
|
||||
num_rows = max_rows;
|
||||
/* We have to check bottom of image here, can't depend on upsampler. */
|
||||
max_rows = cinfo->output_height - post->starting_row;
|
||||
if (num_rows > max_rows)
|
||||
num_rows = max_rows;
|
||||
|
||||
/* Quantize and emit data. */
|
||||
(*cinfo->cquantize->_color_quantize) (cinfo, post->buffer + post->next_row,
|
||||
output_buf + *out_row_ctr,
|
||||
(int)num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
|
||||
/* Advance if we filled the strip. */
|
||||
post->next_row += num_rows;
|
||||
if (post->next_row >= post->strip_height) {
|
||||
post->starting_row += post->strip_height;
|
||||
post->next_row = 0;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* defined(QUANT_2PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16 */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize postprocessing controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_d_post_controller(j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_post_ptr post;
|
||||
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE || cinfo->data_precision < 2)
|
||||
#else
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE ||
|
||||
cinfo->data_precision < BITS_IN_JSAMPLE - 3)
|
||||
#endif
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
}
|
||||
|
||||
post = (my_post_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_post_controller));
|
||||
cinfo->post = (struct jpeg_d_post_controller *)post;
|
||||
post->pub.start_pass = start_pass_dpost;
|
||||
post->whole_image = NULL; /* flag for no virtual arrays */
|
||||
post->buffer = NULL; /* flag for no strip buffer */
|
||||
|
||||
/* Create the quantization buffer, if needed */
|
||||
if (cinfo->quantize_colors) {
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
/* The buffer strip height is max_v_samp_factor, which is typically
|
||||
* an efficient number of rows for upsampling to return.
|
||||
* (In the presence of output rescaling, we might want to be smarter?)
|
||||
*/
|
||||
post->strip_height = (JDIMENSION)cinfo->max_v_samp_factor;
|
||||
if (need_full_buffer) {
|
||||
/* Two-pass color quantization: need full-image storage. */
|
||||
/* We round up the number of rows to a multiple of the strip height. */
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
post->whole_image = (*cinfo->mem->request_virt_sarray)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE, FALSE,
|
||||
cinfo->output_width * cinfo->out_color_components,
|
||||
(JDIMENSION)jround_up((long)cinfo->output_height,
|
||||
(long)post->strip_height),
|
||||
post->strip_height);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
} else {
|
||||
/* One-pass color quantization: just make a strip buffer. */
|
||||
post->buffer = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
cinfo->output_width * cinfo->out_color_components,
|
||||
post->strip_height);
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED) */
|
||||
553
thirdparty/libjpeg-turbo/src/jdsample.c
vendored
Normal file
553
thirdparty/libjpeg-turbo/src/jdsample.c
vendored
Normal file
@@ -0,0 +1,553 @@
|
||||
/*
|
||||
* jdsample.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||||
* Copyright (C) 2010, 2015-2016, 2022, 2024, D. R. Commander.
|
||||
* Copyright (C) 2014, MIPS Technologies, Inc., California.
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
* Copyright (C) 2019-2020, Arm Limited.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains upsampling routines.
|
||||
*
|
||||
* Upsampling input data is counted in "row groups". A row group
|
||||
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
|
||||
* sample rows of each component. Upsampling will normally produce
|
||||
* max_v_samp_factor pixel rows from each row group (but this could vary
|
||||
* if the upsampler is applying a scale factor of its own).
|
||||
*
|
||||
* An excellent reference for image resampling is
|
||||
* Digital Image Warping, George Wolberg, 1990.
|
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
#include "jdsample.h"
|
||||
#include "jsimd.h"
|
||||
#include "jpegapicomp.h"
|
||||
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED)
|
||||
|
||||
/*
|
||||
* Initialize for an upsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_upsample(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
|
||||
/* Mark the conversion buffer empty */
|
||||
upsample->next_row_out = cinfo->max_v_samp_factor;
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
upsample->rows_to_go = cinfo->output_height;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion).
|
||||
*
|
||||
* In this version we upsample each component independently.
|
||||
* We upsample one row group into the conversion buffer, then apply
|
||||
* color conversion a row at a time.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
sep_upsample(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail,
|
||||
_JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
JDIMENSION num_rows;
|
||||
|
||||
/* Fill the conversion buffer, if it's empty */
|
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Invoke per-component upsample method. Notice we pass a POINTER
|
||||
* to color_buf[ci], so that fullsize_upsample can change it.
|
||||
*/
|
||||
(*upsample->methods[ci]) (cinfo, compptr,
|
||||
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
|
||||
upsample->color_buf + ci);
|
||||
}
|
||||
upsample->next_row_out = 0;
|
||||
}
|
||||
|
||||
/* Color-convert and emit rows */
|
||||
|
||||
/* How many we have in the buffer: */
|
||||
num_rows = (JDIMENSION)(cinfo->max_v_samp_factor - upsample->next_row_out);
|
||||
/* Not more than the distance to the end of the image. Need this test
|
||||
* in case the image height is not a multiple of max_v_samp_factor:
|
||||
*/
|
||||
if (num_rows > upsample->rows_to_go)
|
||||
num_rows = upsample->rows_to_go;
|
||||
/* And not more than what the client can accept: */
|
||||
out_rows_avail -= *out_row_ctr;
|
||||
if (num_rows > out_rows_avail)
|
||||
num_rows = out_rows_avail;
|
||||
|
||||
(*cinfo->cconvert->_color_convert) (cinfo, upsample->color_buf,
|
||||
(JDIMENSION)upsample->next_row_out,
|
||||
output_buf + *out_row_ctr,
|
||||
(int)num_rows);
|
||||
|
||||
/* Adjust counts */
|
||||
*out_row_ctr += num_rows;
|
||||
upsample->rows_to_go -= num_rows;
|
||||
upsample->next_row_out += num_rows;
|
||||
/* When the buffer is emptied, declare this input row group consumed */
|
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor)
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by sep_upsample to upsample pixel values
|
||||
* of a single component. One row group is processed per call.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* For full-size components, we just make color_buf[ci] point at the
|
||||
* input buffer, and thus avoid copying any data. Note that this is
|
||||
* safe only because sep_upsample doesn't declare the input row group
|
||||
* "consumed" until we are done color converting and emitting it.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
fullsize_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
|
||||
{
|
||||
*output_data_ptr = input_data;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This is a no-op version used for "uninteresting" components.
|
||||
* These components will not be referenced by color conversion.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
noop_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
|
||||
{
|
||||
*output_data_ptr = NULL; /* safety check */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This version handles any integral sampling ratios.
|
||||
* This is not used for typical JPEG files, so it need not be fast.
|
||||
* Nor, for that matter, is it particularly accurate: the algorithm is
|
||||
* simple replication of the input pixel onto the corresponding output
|
||||
* pixels. The hi-falutin sampling literature refers to this as a
|
||||
* "box filter". A box filter tends to introduce visible artifacts,
|
||||
* so if you are actually going to use 3:1 or 4:1 sampling ratios
|
||||
* you would be well advised to improve this code.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
int_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
_JSAMPARRAY output_data = *output_data_ptr;
|
||||
register _JSAMPROW inptr, outptr;
|
||||
register _JSAMPLE invalue;
|
||||
register int h;
|
||||
_JSAMPROW outend;
|
||||
int h_expand, v_expand;
|
||||
int inrow, outrow;
|
||||
|
||||
h_expand = upsample->h_expand[compptr->component_index];
|
||||
v_expand = upsample->v_expand[compptr->component_index];
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
/* Generate one output row with proper horizontal expansion */
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[outrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++;
|
||||
for (h = h_expand; h > 0; h--) {
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
}
|
||||
/* Generate any additional output rows by duplicating the first one */
|
||||
if (v_expand > 1) {
|
||||
_jcopy_sample_rows(output_data, outrow, output_data, outrow + 1,
|
||||
v_expand - 1, cinfo->output_width);
|
||||
}
|
||||
inrow++;
|
||||
outrow += v_expand;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
|
||||
* It's still a box filter.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
|
||||
{
|
||||
_JSAMPARRAY output_data = *output_data_ptr;
|
||||
register _JSAMPROW inptr, outptr;
|
||||
register _JSAMPLE invalue;
|
||||
_JSAMPROW outend;
|
||||
int inrow;
|
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[inrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++;
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
|
||||
* It's still a box filter.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
|
||||
{
|
||||
_JSAMPARRAY output_data = *output_data_ptr;
|
||||
register _JSAMPROW inptr, outptr;
|
||||
register _JSAMPLE invalue;
|
||||
_JSAMPROW outend;
|
||||
int inrow, outrow;
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[outrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++;
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
_jcopy_sample_rows(output_data, outrow, output_data, outrow + 1, 1,
|
||||
cinfo->output_width);
|
||||
inrow++;
|
||||
outrow += 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
|
||||
*
|
||||
* The upsampling algorithm is linear interpolation between pixel centers,
|
||||
* also known as a "triangle filter". This is a good compromise between
|
||||
* speed and visual quality. The centers of the output pixels are 1/4 and 3/4
|
||||
* of the way between input pixel centers.
|
||||
*
|
||||
* A note about the "bias" calculations: when rounding fractional values to
|
||||
* integer, we do not want to always round 0.5 up to the next integer.
|
||||
* If we did that, we'd introduce a noticeable bias towards larger values.
|
||||
* Instead, this code is arranged so that 0.5 will be rounded up or down at
|
||||
* alternate pixel locations (a simple ordered dither pattern).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
|
||||
{
|
||||
_JSAMPARRAY output_data = *output_data_ptr;
|
||||
register _JSAMPROW inptr, outptr;
|
||||
register int invalue;
|
||||
register JDIMENSION colctr;
|
||||
int inrow;
|
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[inrow];
|
||||
/* Special case for first column */
|
||||
invalue = *inptr++;
|
||||
*outptr++ = (_JSAMPLE)invalue;
|
||||
*outptr++ = (_JSAMPLE)((invalue * 3 + inptr[0] + 2) >> 2);
|
||||
|
||||
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
|
||||
/* General case: 3/4 * nearer pixel + 1/4 * further pixel */
|
||||
invalue = (*inptr++) * 3;
|
||||
*outptr++ = (_JSAMPLE)((invalue + inptr[-2] + 1) >> 2);
|
||||
*outptr++ = (_JSAMPLE)((invalue + inptr[0] + 2) >> 2);
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
invalue = *inptr;
|
||||
*outptr++ = (_JSAMPLE)((invalue * 3 + inptr[-1] + 1) >> 2);
|
||||
*outptr++ = (_JSAMPLE)invalue;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fancy processing for 1:1 horizontal and 2:1 vertical (4:4:0 subsampling).
|
||||
*
|
||||
* This is a less common case, but it can be encountered when losslessly
|
||||
* rotating/transposing a JPEG file that uses 4:2:2 chroma subsampling.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h1v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
|
||||
{
|
||||
_JSAMPARRAY output_data = *output_data_ptr;
|
||||
_JSAMPROW inptr0, inptr1, outptr;
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
int thiscolsum, bias;
|
||||
#else
|
||||
JLONG thiscolsum, bias;
|
||||
#endif
|
||||
JDIMENSION colctr;
|
||||
int inrow, outrow, v;
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
for (v = 0; v < 2; v++) {
|
||||
/* inptr0 points to nearest input row, inptr1 points to next nearest */
|
||||
inptr0 = input_data[inrow];
|
||||
if (v == 0) { /* next nearest is row above */
|
||||
inptr1 = input_data[inrow - 1];
|
||||
bias = 1;
|
||||
} else { /* next nearest is row below */
|
||||
inptr1 = input_data[inrow + 1];
|
||||
bias = 2;
|
||||
}
|
||||
outptr = output_data[outrow++];
|
||||
|
||||
for (colctr = 0; colctr < compptr->downsampled_width; colctr++) {
|
||||
thiscolsum = (*inptr0++) * 3 + (*inptr1++);
|
||||
*outptr++ = (_JSAMPLE)((thiscolsum + bias) >> 2);
|
||||
}
|
||||
}
|
||||
inrow++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
|
||||
* Again a triangle filter; see comments for h2v1 case, above.
|
||||
*
|
||||
* It is OK for us to reference the adjacent input rows because we demanded
|
||||
* context from the main buffer controller (see initialization code).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
|
||||
{
|
||||
_JSAMPARRAY output_data = *output_data_ptr;
|
||||
register _JSAMPROW inptr0, inptr1, outptr;
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
register int thiscolsum, lastcolsum, nextcolsum;
|
||||
#else
|
||||
register JLONG thiscolsum, lastcolsum, nextcolsum;
|
||||
#endif
|
||||
register JDIMENSION colctr;
|
||||
int inrow, outrow, v;
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
for (v = 0; v < 2; v++) {
|
||||
/* inptr0 points to nearest input row, inptr1 points to next nearest */
|
||||
inptr0 = input_data[inrow];
|
||||
if (v == 0) /* next nearest is row above */
|
||||
inptr1 = input_data[inrow - 1];
|
||||
else /* next nearest is row below */
|
||||
inptr1 = input_data[inrow + 1];
|
||||
outptr = output_data[outrow++];
|
||||
|
||||
/* Special case for first column */
|
||||
thiscolsum = (*inptr0++) * 3 + (*inptr1++);
|
||||
nextcolsum = (*inptr0++) * 3 + (*inptr1++);
|
||||
*outptr++ = (_JSAMPLE)((thiscolsum * 4 + 8) >> 4);
|
||||
*outptr++ = (_JSAMPLE)((thiscolsum * 3 + nextcolsum + 7) >> 4);
|
||||
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
|
||||
|
||||
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
|
||||
/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
|
||||
/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
|
||||
nextcolsum = (*inptr0++) * 3 + (*inptr1++);
|
||||
*outptr++ = (_JSAMPLE)((thiscolsum * 3 + lastcolsum + 8) >> 4);
|
||||
*outptr++ = (_JSAMPLE)((thiscolsum * 3 + nextcolsum + 7) >> 4);
|
||||
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
*outptr++ = (_JSAMPLE)((thiscolsum * 3 + lastcolsum + 8) >> 4);
|
||||
*outptr++ = (_JSAMPLE)((thiscolsum * 4 + 7) >> 4);
|
||||
}
|
||||
inrow++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for upsampling.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_upsampler(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
boolean need_buffer, do_fancy;
|
||||
int h_in_group, v_in_group, h_out_group, v_out_group;
|
||||
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
if (cinfo->master->lossless) {
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE || cinfo->data_precision < 2)
|
||||
#else
|
||||
if (cinfo->data_precision > BITS_IN_JSAMPLE ||
|
||||
cinfo->data_precision < BITS_IN_JSAMPLE - 3)
|
||||
#endif
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
}
|
||||
|
||||
if (!cinfo->master->jinit_upsampler_no_alloc) {
|
||||
upsample = (my_upsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_upsampler));
|
||||
cinfo->upsample = (struct jpeg_upsampler *)upsample;
|
||||
upsample->pub.start_pass = start_pass_upsample;
|
||||
upsample->pub._upsample = sep_upsample;
|
||||
upsample->pub.need_context_rows = FALSE; /* until we find out differently */
|
||||
} else
|
||||
upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
|
||||
if (cinfo->CCIR601_sampling) /* this isn't supported */
|
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
||||
|
||||
/* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
|
||||
* so don't ask for it.
|
||||
*/
|
||||
do_fancy = cinfo->do_fancy_upsampling && cinfo->_min_DCT_scaled_size > 1;
|
||||
|
||||
/* Verify we can handle the sampling factors, select per-component methods,
|
||||
* and create storage as needed.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Compute size of an "input group" after IDCT scaling. This many samples
|
||||
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
|
||||
*/
|
||||
h_in_group = (compptr->h_samp_factor * compptr->_DCT_scaled_size) /
|
||||
cinfo->_min_DCT_scaled_size;
|
||||
v_in_group = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
|
||||
cinfo->_min_DCT_scaled_size;
|
||||
h_out_group = cinfo->max_h_samp_factor;
|
||||
v_out_group = cinfo->max_v_samp_factor;
|
||||
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
|
||||
need_buffer = TRUE;
|
||||
if (!compptr->component_needed) {
|
||||
/* Don't bother to upsample an uninteresting component. */
|
||||
upsample->methods[ci] = noop_upsample;
|
||||
need_buffer = FALSE;
|
||||
} else if (h_in_group == h_out_group && v_in_group == v_out_group) {
|
||||
/* Fullsize components can be processed without any work. */
|
||||
upsample->methods[ci] = fullsize_upsample;
|
||||
need_buffer = FALSE;
|
||||
} else if (h_in_group * 2 == h_out_group && v_in_group == v_out_group) {
|
||||
/* Special cases for 2h1v upsampling */
|
||||
if (do_fancy && compptr->downsampled_width > 2) {
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_h2v1_fancy_upsample())
|
||||
upsample->methods[ci] = jsimd_h2v1_fancy_upsample;
|
||||
else
|
||||
#endif
|
||||
upsample->methods[ci] = h2v1_fancy_upsample;
|
||||
} else {
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_h2v1_upsample())
|
||||
upsample->methods[ci] = jsimd_h2v1_upsample;
|
||||
else
|
||||
#endif
|
||||
upsample->methods[ci] = h2v1_upsample;
|
||||
}
|
||||
} else if (h_in_group == h_out_group &&
|
||||
v_in_group * 2 == v_out_group && do_fancy) {
|
||||
/* Non-fancy upsampling is handled by the generic method */
|
||||
#if defined(WITH_SIMD) && (defined(__arm__) || defined(__aarch64__) || \
|
||||
defined(_M_ARM) || defined(_M_ARM64))
|
||||
if (jsimd_can_h1v2_fancy_upsample())
|
||||
upsample->methods[ci] = jsimd_h1v2_fancy_upsample;
|
||||
else
|
||||
#endif
|
||||
upsample->methods[ci] = h1v2_fancy_upsample;
|
||||
upsample->pub.need_context_rows = TRUE;
|
||||
} else if (h_in_group * 2 == h_out_group &&
|
||||
v_in_group * 2 == v_out_group) {
|
||||
/* Special cases for 2h2v upsampling */
|
||||
if (do_fancy && compptr->downsampled_width > 2) {
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_h2v2_fancy_upsample())
|
||||
upsample->methods[ci] = jsimd_h2v2_fancy_upsample;
|
||||
else
|
||||
#endif
|
||||
upsample->methods[ci] = h2v2_fancy_upsample;
|
||||
upsample->pub.need_context_rows = TRUE;
|
||||
} else {
|
||||
#ifdef WITH_SIMD
|
||||
if (jsimd_can_h2v2_upsample())
|
||||
upsample->methods[ci] = jsimd_h2v2_upsample;
|
||||
else
|
||||
#endif
|
||||
upsample->methods[ci] = h2v2_upsample;
|
||||
}
|
||||
} else if ((h_out_group % h_in_group) == 0 &&
|
||||
(v_out_group % v_in_group) == 0) {
|
||||
/* Generic integral-factors upsampling method */
|
||||
#if defined(WITH_SIMD) && defined(__mips__)
|
||||
if (jsimd_can_int_upsample())
|
||||
upsample->methods[ci] = jsimd_int_upsample;
|
||||
else
|
||||
#endif
|
||||
upsample->methods[ci] = int_upsample;
|
||||
upsample->h_expand[ci] = (UINT8)(h_out_group / h_in_group);
|
||||
upsample->v_expand[ci] = (UINT8)(v_out_group / v_in_group);
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
||||
if (need_buffer && !cinfo->master->jinit_upsampler_no_alloc) {
|
||||
upsample->color_buf[ci] = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION)jround_up((long)cinfo->output_width,
|
||||
(long)cinfo->max_h_samp_factor),
|
||||
(JDIMENSION)cinfo->max_v_samp_factor);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED) */
|
||||
53
thirdparty/libjpeg-turbo/src/jdsample.h
vendored
Normal file
53
thirdparty/libjpeg-turbo/src/jdsample.h
vendored
Normal file
@@ -0,0 +1,53 @@
|
||||
/*
|
||||
* jdsample.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jpeglib.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
/* Pointer to routine to upsample a single component */
|
||||
typedef void (*upsample1_ptr) (j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
_JSAMPARRAY input_data,
|
||||
_JSAMPARRAY *output_data_ptr);
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_upsampler pub; /* public fields */
|
||||
|
||||
/* Color conversion buffer. When using separate upsampling and color
|
||||
* conversion steps, this buffer holds one upsampled row group until it
|
||||
* has been color converted and output.
|
||||
* Note: we do not allocate any storage for component(s) which are full-size,
|
||||
* ie do not need rescaling. The corresponding entry of color_buf[] is
|
||||
* simply set to point to the input data array, thereby avoiding copying.
|
||||
*/
|
||||
_JSAMPARRAY color_buf[MAX_COMPONENTS];
|
||||
|
||||
/* Per-component upsampling method pointers */
|
||||
upsample1_ptr methods[MAX_COMPONENTS];
|
||||
|
||||
int next_row_out; /* counts rows emitted from color_buf */
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||
|
||||
/* Height of an input row group for each component. */
|
||||
int rowgroup_height[MAX_COMPONENTS];
|
||||
|
||||
/* These arrays save pixel expansion factors so that int_expand need not
|
||||
* recompute them each time. They are unused for other upsampling methods.
|
||||
*/
|
||||
UINT8 h_expand[MAX_COMPONENTS];
|
||||
UINT8 v_expand[MAX_COMPONENTS];
|
||||
} my_upsampler;
|
||||
|
||||
typedef my_upsampler *my_upsample_ptr;
|
||||
162
thirdparty/libjpeg-turbo/src/jdtrans.c
vendored
Normal file
162
thirdparty/libjpeg-turbo/src/jdtrans.c
vendored
Normal file
@@ -0,0 +1,162 @@
|
||||
/*
|
||||
* jdtrans.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1995-1997, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2020, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains library routines for transcoding decompression,
|
||||
* that is, reading raw DCT coefficient arrays from an input JPEG file.
|
||||
* The routines in jdapimin.c will also be needed by a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jpegapicomp.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
LOCAL(void) transdecode_master_selection(j_decompress_ptr cinfo);
|
||||
|
||||
|
||||
/*
|
||||
* Read the coefficient arrays from a JPEG file.
|
||||
* jpeg_read_header must be completed before calling this.
|
||||
*
|
||||
* The entire image is read into a set of virtual coefficient-block arrays,
|
||||
* one per component. The return value is a pointer to the array of
|
||||
* virtual-array descriptors. These can be manipulated directly via the
|
||||
* JPEG memory manager, or handed off to jpeg_write_coefficients().
|
||||
* To release the memory occupied by the virtual arrays, call
|
||||
* jpeg_finish_decompress() when done with the data.
|
||||
*
|
||||
* An alternative usage is to simply obtain access to the coefficient arrays
|
||||
* during a buffered-image-mode decompression operation. This is allowed
|
||||
* after any jpeg_finish_output() call. The arrays can be accessed until
|
||||
* jpeg_finish_decompress() is called. (Note that any call to the library
|
||||
* may reposition the arrays, so don't rely on access_virt_barray() results
|
||||
* to stay valid across library calls.)
|
||||
*
|
||||
* Returns NULL if suspended. This case need be checked only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(jvirt_barray_ptr *)
|
||||
jpeg_read_coefficients(j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->master->lossless)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
|
||||
if (cinfo->global_state == DSTATE_READY) {
|
||||
/* First call: initialize active modules */
|
||||
transdecode_master_selection(cinfo);
|
||||
cinfo->global_state = DSTATE_RDCOEFS;
|
||||
}
|
||||
if (cinfo->global_state == DSTATE_RDCOEFS) {
|
||||
/* Absorb whole file into the coef buffer */
|
||||
for (;;) {
|
||||
int retcode;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL)
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo);
|
||||
/* Absorb some more input */
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
if (retcode == JPEG_SUSPENDED)
|
||||
return NULL;
|
||||
if (retcode == JPEG_REACHED_EOI)
|
||||
break;
|
||||
/* Advance progress counter if appropriate */
|
||||
if (cinfo->progress != NULL &&
|
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
|
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
|
||||
/* startup underestimated number of scans; ratchet up one scan */
|
||||
cinfo->progress->pass_limit += (long)cinfo->total_iMCU_rows;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Set state so that jpeg_finish_decompress does the right thing */
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
}
|
||||
/* At this point we should be in state DSTATE_STOPPING if being used
|
||||
* standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
|
||||
* to the coefficients during a full buffered-image-mode decompression.
|
||||
*/
|
||||
if ((cinfo->global_state == DSTATE_STOPPING ||
|
||||
cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
|
||||
return cinfo->coef->coef_arrays;
|
||||
}
|
||||
/* Oops, improper usage */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return NULL; /* keep compiler happy */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of decompression modules for transcoding.
|
||||
* This substitutes for jdmaster.c's initialization of the full decompressor.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
transdecode_master_selection(j_decompress_ptr cinfo)
|
||||
{
|
||||
/* This is effectively a buffered-image operation. */
|
||||
cinfo->buffered_image = TRUE;
|
||||
|
||||
#if JPEG_LIB_VERSION >= 80
|
||||
/* Compute output image dimensions and related values. */
|
||||
jpeg_core_output_dimensions(cinfo);
|
||||
#endif
|
||||
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
#ifdef D_ARITH_CODING_SUPPORTED
|
||||
jinit_arith_decoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
#endif
|
||||
} else {
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef D_PROGRESSIVE_SUPPORTED
|
||||
jinit_phuff_decoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else
|
||||
jinit_huff_decoder(cinfo);
|
||||
}
|
||||
|
||||
/* Always get a full-image coefficient buffer. */
|
||||
if (cinfo->data_precision == 12)
|
||||
j12init_d_coef_controller(cinfo, TRUE);
|
||||
else
|
||||
jinit_d_coef_controller(cinfo, TRUE);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr)cinfo);
|
||||
|
||||
/* Initialize input side of decompressor to consume first scan. */
|
||||
(*cinfo->inputctl->start_input_pass) (cinfo);
|
||||
|
||||
/* Initialize progress monitoring. */
|
||||
if (cinfo->progress != NULL) {
|
||||
int nscans;
|
||||
/* Estimate number of scans to set pass_limit. */
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
|
||||
nscans = 2 + 3 * cinfo->num_components;
|
||||
} else if (cinfo->inputctl->has_multiple_scans) {
|
||||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
|
||||
nscans = cinfo->num_components;
|
||||
} else {
|
||||
nscans = 1;
|
||||
}
|
||||
cinfo->progress->pass_counter = 0L;
|
||||
cinfo->progress->pass_limit = (long)cinfo->total_iMCU_rows * nscans;
|
||||
cinfo->progress->completed_passes = 0;
|
||||
cinfo->progress->total_passes = 1;
|
||||
}
|
||||
}
|
||||
243
thirdparty/libjpeg-turbo/src/jerror.c
vendored
Normal file
243
thirdparty/libjpeg-turbo/src/jerror.c
vendored
Normal file
@@ -0,0 +1,243 @@
|
||||
/*
|
||||
* jerror.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2022, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains simple error-reporting and trace-message routines.
|
||||
* These are suitable for Unix-like systems and others where writing to
|
||||
* stderr is the right thing to do. Many applications will want to replace
|
||||
* some or all of these routines.
|
||||
*
|
||||
* If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
|
||||
* you get a Windows-specific hack to display error messages in a dialog box.
|
||||
* It ain't much, but it beats dropping error messages into the bit bucket,
|
||||
* which is what happens to output to stderr under most Windows C compilers.
|
||||
*
|
||||
* These routines are used by both the compression and decompression code.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jversion.h"
|
||||
#include "jerror.h"
|
||||
|
||||
#ifdef USE_WINDOWS_MESSAGEBOX
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
|
||||
#define EXIT_FAILURE 1
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Create the message string table.
|
||||
* We do this from the master message list in jerror.h by re-reading
|
||||
* jerror.h with a suitable definition for macro JMESSAGE.
|
||||
*/
|
||||
|
||||
#define JMESSAGE(code, string) string,
|
||||
|
||||
static const char * const jpeg_std_message_table[] = {
|
||||
#include "jerror.h"
|
||||
NULL
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Error exit handler: must not return to caller.
|
||||
*
|
||||
* Applications may override this if they want to get control back after
|
||||
* an error. Typically one would longjmp somewhere instead of exiting.
|
||||
* The setjmp buffer can be made a private field within an expanded error
|
||||
* handler object. Note that the info needed to generate an error message
|
||||
* is stored in the error object, so you can generate the message now or
|
||||
* later, at your convenience.
|
||||
* You should make sure that the JPEG object is cleaned up (with jpeg_abort
|
||||
* or jpeg_destroy) at some point.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
error_exit(j_common_ptr cinfo)
|
||||
{
|
||||
/* Always display the message */
|
||||
(*cinfo->err->output_message) (cinfo);
|
||||
|
||||
/* Let the memory manager delete any temp files before we die */
|
||||
jpeg_destroy(cinfo);
|
||||
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Actual output of an error or trace message.
|
||||
* Applications may override this method to send JPEG messages somewhere
|
||||
* other than stderr.
|
||||
*
|
||||
* On Windows, printing to stderr is generally completely useless,
|
||||
* so we provide optional code to produce an error-dialog popup.
|
||||
* Most Windows applications will still prefer to override this routine,
|
||||
* but if they don't, it'll do something at least marginally useful.
|
||||
*
|
||||
* NOTE: to use the library in an environment that doesn't support the
|
||||
* C stdio library, you may have to delete the call to fprintf() entirely,
|
||||
* not just not use this routine.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
output_message(j_common_ptr cinfo)
|
||||
{
|
||||
char buffer[JMSG_LENGTH_MAX];
|
||||
|
||||
/* Create the message */
|
||||
(*cinfo->err->format_message) (cinfo, buffer);
|
||||
|
||||
#ifdef USE_WINDOWS_MESSAGEBOX
|
||||
/* Display it in a message dialog box */
|
||||
MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
|
||||
MB_OK | MB_ICONERROR);
|
||||
#else
|
||||
/* Send it to stderr, adding a newline */
|
||||
fprintf(stderr, "%s\n", buffer);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decide whether to emit a trace or warning message.
|
||||
* msg_level is one of:
|
||||
* -1: recoverable corrupt-data warning, may want to abort.
|
||||
* 0: important advisory messages (always display to user).
|
||||
* 1: first level of tracing detail.
|
||||
* 2,3,...: successively more detailed tracing messages.
|
||||
* An application might override this method if it wanted to abort on warnings
|
||||
* or change the policy about which messages to display.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
emit_message(j_common_ptr cinfo, int msg_level)
|
||||
{
|
||||
struct jpeg_error_mgr *err = cinfo->err;
|
||||
|
||||
if (msg_level < 0) {
|
||||
/* It's a warning message. Since corrupt files may generate many warnings,
|
||||
* the policy implemented here is to show only the first warning,
|
||||
* unless trace_level >= 3.
|
||||
*/
|
||||
if (err->num_warnings == 0 || err->trace_level >= 3)
|
||||
(*err->output_message) (cinfo);
|
||||
/* Always count warnings in num_warnings. */
|
||||
err->num_warnings++;
|
||||
} else {
|
||||
/* It's a trace message. Show it if trace_level >= msg_level. */
|
||||
if (err->trace_level >= msg_level)
|
||||
(*err->output_message) (cinfo);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Format a message string for the most recent JPEG error or message.
|
||||
* The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
|
||||
* characters. Note that no '\n' character is added to the string.
|
||||
* Few applications should need to override this method.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
format_message(j_common_ptr cinfo, char *buffer)
|
||||
{
|
||||
struct jpeg_error_mgr *err = cinfo->err;
|
||||
int msg_code = err->msg_code;
|
||||
const char *msgtext = NULL;
|
||||
const char *msgptr;
|
||||
char ch;
|
||||
boolean isstring;
|
||||
|
||||
/* Look up message string in proper table */
|
||||
if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
|
||||
msgtext = err->jpeg_message_table[msg_code];
|
||||
} else if (err->addon_message_table != NULL &&
|
||||
msg_code >= err->first_addon_message &&
|
||||
msg_code <= err->last_addon_message) {
|
||||
msgtext = err->addon_message_table[msg_code - err->first_addon_message];
|
||||
}
|
||||
|
||||
/* Defend against bogus message number */
|
||||
if (msgtext == NULL) {
|
||||
err->msg_parm.i[0] = msg_code;
|
||||
msgtext = err->jpeg_message_table[0];
|
||||
}
|
||||
|
||||
/* Check for string parameter, as indicated by %s in the message text */
|
||||
isstring = FALSE;
|
||||
msgptr = msgtext;
|
||||
while ((ch = *msgptr++) != '\0') {
|
||||
if (ch == '%') {
|
||||
if (*msgptr == 's') isstring = TRUE;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Format the message into the passed buffer */
|
||||
if (isstring)
|
||||
SNPRINTF(buffer, JMSG_LENGTH_MAX, msgtext, err->msg_parm.s);
|
||||
else
|
||||
SNPRINTF(buffer, JMSG_LENGTH_MAX, msgtext,
|
||||
err->msg_parm.i[0], err->msg_parm.i[1],
|
||||
err->msg_parm.i[2], err->msg_parm.i[3],
|
||||
err->msg_parm.i[4], err->msg_parm.i[5],
|
||||
err->msg_parm.i[6], err->msg_parm.i[7]);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Reset error state variables at start of a new image.
|
||||
* This is called during compression startup to reset trace/error
|
||||
* processing to default state, without losing any application-specific
|
||||
* method pointers. An application might possibly want to override
|
||||
* this method if it has additional error processing state.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
reset_error_mgr(j_common_ptr cinfo)
|
||||
{
|
||||
cinfo->err->num_warnings = 0;
|
||||
/* trace_level is not reset since it is an application-supplied parameter */
|
||||
cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fill in the standard error-handling methods in a jpeg_error_mgr object.
|
||||
* Typical call is:
|
||||
* struct jpeg_compress_struct cinfo;
|
||||
* struct jpeg_error_mgr err;
|
||||
*
|
||||
* cinfo.err = jpeg_std_error(&err);
|
||||
* after which the application may override some of the methods.
|
||||
*/
|
||||
|
||||
GLOBAL(struct jpeg_error_mgr *)
|
||||
jpeg_std_error(struct jpeg_error_mgr *err)
|
||||
{
|
||||
memset(err, 0, sizeof(struct jpeg_error_mgr));
|
||||
|
||||
err->error_exit = error_exit;
|
||||
err->emit_message = emit_message;
|
||||
err->output_message = output_message;
|
||||
err->format_message = format_message;
|
||||
err->reset_error_mgr = reset_error_mgr;
|
||||
|
||||
/* Initialize message table pointers */
|
||||
err->jpeg_message_table = jpeg_std_message_table;
|
||||
err->last_jpeg_message = (int)JMSG_LASTMSGCODE - 1;
|
||||
|
||||
return err;
|
||||
}
|
||||
336
thirdparty/libjpeg-turbo/src/jerror.h
vendored
Normal file
336
thirdparty/libjpeg-turbo/src/jerror.h
vendored
Normal file
@@ -0,0 +1,336 @@
|
||||
/*
|
||||
* jerror.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* Modified 1997-2009 by Guido Vollbeding.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2014, 2017, 2021-2023, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file defines the error and message codes for the JPEG library.
|
||||
* Edit this file to add new codes, or to translate the message strings to
|
||||
* some other language.
|
||||
* A set of error-reporting macros are defined too. Some applications using
|
||||
* the JPEG library may wish to include this file to get the error codes
|
||||
* and/or the macros.
|
||||
*/
|
||||
|
||||
/*
|
||||
* To define the enum list of message codes, include this file without
|
||||
* defining macro JMESSAGE. To create a message string table, include it
|
||||
* again with a suitable JMESSAGE definition (see jerror.c for an example).
|
||||
*/
|
||||
#ifndef JMESSAGE
|
||||
#ifndef JERROR_H
|
||||
/* First time through, define the enum list */
|
||||
#define JMAKE_ENUM_LIST
|
||||
#else
|
||||
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
|
||||
#define JMESSAGE(code, string)
|
||||
#endif /* JERROR_H */
|
||||
#endif /* JMESSAGE */
|
||||
|
||||
#ifdef JMAKE_ENUM_LIST
|
||||
|
||||
typedef enum {
|
||||
|
||||
#define JMESSAGE(code, string) code,
|
||||
|
||||
#endif /* JMAKE_ENUM_LIST */
|
||||
|
||||
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
|
||||
|
||||
/* For maintenance convenience, list is alphabetical by message code name */
|
||||
#if JPEG_LIB_VERSION < 70
|
||||
JMESSAGE(JERR_ARITH_NOTIMPL, "Sorry, arithmetic coding is not implemented")
|
||||
#endif
|
||||
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
|
||||
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
|
||||
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
|
||||
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request")
|
||||
#endif
|
||||
JMESSAGE(JERR_BAD_DCT_COEF,
|
||||
"DCT coefficient (lossy) or spatial difference (lossless) out of range")
|
||||
JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported")
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
JMESSAGE(JERR_BAD_DROP_SAMPLING,
|
||||
"Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c")
|
||||
#endif
|
||||
JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
|
||||
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
|
||||
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
|
||||
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
|
||||
JMESSAGE(JERR_BAD_LIB_VERSION,
|
||||
"Wrong JPEG library version: library is %d, caller expects %d")
|
||||
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
|
||||
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
|
||||
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
|
||||
JMESSAGE(JERR_BAD_PROGRESSION,
|
||||
"Invalid progressive/lossless parameters Ss=%d Se=%d Ah=%d Al=%d")
|
||||
JMESSAGE(JERR_BAD_PROG_SCRIPT,
|
||||
"Invalid progressive/lossless parameters at scan script entry %d")
|
||||
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
|
||||
JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
|
||||
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
|
||||
JMESSAGE(JERR_BAD_STRUCT_SIZE,
|
||||
"JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
|
||||
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
|
||||
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
|
||||
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
|
||||
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
|
||||
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
|
||||
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
|
||||
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
|
||||
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
|
||||
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
|
||||
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
|
||||
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
|
||||
JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
|
||||
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
|
||||
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
|
||||
JMESSAGE(JERR_FILE_READ, "Input file read error")
|
||||
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
|
||||
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
|
||||
JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
|
||||
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
|
||||
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
|
||||
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
|
||||
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
|
||||
JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
|
||||
"Cannot transcode due to multiple use of quantization table %d")
|
||||
JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
|
||||
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
|
||||
JMESSAGE(JERR_NOTIMPL, "Requested features are incompatible")
|
||||
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
|
||||
#endif
|
||||
JMESSAGE(JERR_NO_BACKING_STORE, "Memory limit exceeded")
|
||||
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
|
||||
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
|
||||
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
|
||||
JMESSAGE(JERR_QUANT_COMPONENTS,
|
||||
"Cannot quantize more than %d color components")
|
||||
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
|
||||
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
|
||||
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
|
||||
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
|
||||
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
|
||||
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
|
||||
JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
|
||||
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
|
||||
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
|
||||
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
|
||||
JMESSAGE(JERR_TFILE_WRITE,
|
||||
"Write failed on temporary file --- out of disk space?")
|
||||
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
|
||||
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
|
||||
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
|
||||
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
|
||||
JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
|
||||
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
|
||||
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT_SHORT)
|
||||
JMESSAGE(JMSG_VERSION, JVERSION)
|
||||
JMESSAGE(JTRC_16BIT_TABLES,
|
||||
"Caution: quantization tables are too coarse for baseline JPEG")
|
||||
JMESSAGE(JTRC_ADOBE,
|
||||
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
|
||||
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
|
||||
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
|
||||
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
|
||||
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
|
||||
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
|
||||
JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
|
||||
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
|
||||
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
|
||||
JMESSAGE(JTRC_EOI, "End Of Image")
|
||||
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
|
||||
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
|
||||
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
|
||||
"Warning: thumbnail image size does not match data length %u")
|
||||
JMESSAGE(JTRC_JFIF_EXTENSION, "JFIF extension marker: type 0x%02x, length %u")
|
||||
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
|
||||
JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
|
||||
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
|
||||
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
|
||||
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
|
||||
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
|
||||
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
|
||||
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
|
||||
JMESSAGE(JTRC_RST, "RST%d")
|
||||
JMESSAGE(JTRC_SMOOTH_NOTIMPL,
|
||||
"Smoothing not supported with nonstandard sampling ratios")
|
||||
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
|
||||
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
|
||||
JMESSAGE(JTRC_SOI, "Start of Image")
|
||||
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
|
||||
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
|
||||
JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
|
||||
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
|
||||
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
|
||||
JMESSAGE(JTRC_THUMB_JPEG,
|
||||
"JFIF extension marker: JPEG-compressed thumbnail image, length %u")
|
||||
JMESSAGE(JTRC_THUMB_PALETTE,
|
||||
"JFIF extension marker: palette thumbnail image, length %u")
|
||||
JMESSAGE(JTRC_THUMB_RGB,
|
||||
"JFIF extension marker: RGB thumbnail image, length %u")
|
||||
JMESSAGE(JTRC_UNKNOWN_IDS,
|
||||
"Unrecognized component IDs %d %d %d, assuming YCbCr (lossy) or RGB (lossless)")
|
||||
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
|
||||
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
|
||||
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
|
||||
#endif
|
||||
JMESSAGE(JWRN_BOGUS_PROGRESSION,
|
||||
"Inconsistent progression sequence for component %d coefficient %d")
|
||||
JMESSAGE(JWRN_EXTRANEOUS_DATA,
|
||||
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
|
||||
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
|
||||
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
|
||||
JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
|
||||
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
|
||||
JMESSAGE(JWRN_MUST_RESYNC,
|
||||
"Corrupt JPEG data: found marker 0x%02x instead of RST%d")
|
||||
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
|
||||
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
|
||||
#if JPEG_LIB_VERSION < 70
|
||||
JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request")
|
||||
#if defined(C_ARITH_CODING_SUPPORTED) || defined(D_ARITH_CODING_SUPPORTED)
|
||||
JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
|
||||
JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
|
||||
#endif
|
||||
#endif
|
||||
JMESSAGE(JWRN_BOGUS_ICC, "Corrupt JPEG data: bad ICC marker")
|
||||
#if JPEG_LIB_VERSION < 70
|
||||
JMESSAGE(JERR_BAD_DROP_SAMPLING,
|
||||
"Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c")
|
||||
#endif
|
||||
JMESSAGE(JERR_BAD_RESTART,
|
||||
"Invalid restart interval %d; must be an integer multiple of the number of MCUs in an MCU row (%d)")
|
||||
|
||||
#ifdef JMAKE_ENUM_LIST
|
||||
|
||||
JMSG_LASTMSGCODE
|
||||
} J_MESSAGE_CODE;
|
||||
|
||||
#undef JMAKE_ENUM_LIST
|
||||
#endif /* JMAKE_ENUM_LIST */
|
||||
|
||||
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
|
||||
#undef JMESSAGE
|
||||
|
||||
|
||||
#ifndef JERROR_H
|
||||
#define JERROR_H
|
||||
|
||||
/* Macros to simplify using the error and trace message stuff */
|
||||
/* The first parameter is either type of cinfo pointer */
|
||||
|
||||
/* Fatal errors (print message and exit) */
|
||||
#define ERREXIT(cinfo, code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo)))
|
||||
#define ERREXIT1(cinfo, code, p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo)))
|
||||
#define ERREXIT2(cinfo, code, p1, p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo)))
|
||||
#define ERREXIT3(cinfo, code, p1, p2, p3) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo)))
|
||||
#define ERREXIT4(cinfo, code, p1, p2, p3, p4) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(cinfo)->err->msg_parm.i[3] = (p4), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo)))
|
||||
#define ERREXIT6(cinfo, code, p1, p2, p3, p4, p5, p6) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(cinfo)->err->msg_parm.i[3] = (p4), \
|
||||
(cinfo)->err->msg_parm.i[4] = (p5), \
|
||||
(cinfo)->err->msg_parm.i[5] = (p6), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo)))
|
||||
#define ERREXITS(cinfo, code, str) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(cinfo)->err->msg_parm.s[JMSG_STR_PARM_MAX - 1] = '\0', \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo)))
|
||||
|
||||
#define MAKESTMT(stuff) do { stuff } while (0)
|
||||
|
||||
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
|
||||
#define WARNMS(cinfo, code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), -1))
|
||||
#define WARNMS1(cinfo, code, p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), -1))
|
||||
#define WARNMS2(cinfo, code, p1, p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), -1))
|
||||
|
||||
/* Informational/debugging messages */
|
||||
#define TRACEMS(cinfo, lvl, code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)))
|
||||
#define TRACEMS1(cinfo, lvl, code, p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)))
|
||||
#define TRACEMS2(cinfo, lvl, code, p1, p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)))
|
||||
#define TRACEMS3(cinfo, lvl, code, p1, p2, p3) \
|
||||
MAKESTMT(int *_mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)); )
|
||||
#define TRACEMS4(cinfo, lvl, code, p1, p2, p3, p4) \
|
||||
MAKESTMT(int *_mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)); )
|
||||
#define TRACEMS5(cinfo, lvl, code, p1, p2, p3, p4, p5) \
|
||||
MAKESTMT(int *_mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
_mp[4] = (p5); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)); )
|
||||
#define TRACEMS8(cinfo, lvl, code, p1, p2, p3, p4, p5, p6, p7, p8) \
|
||||
MAKESTMT(int *_mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)); )
|
||||
#define TRACEMSS(cinfo, lvl, code, str) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(cinfo)->err->msg_parm.s[JMSG_STR_PARM_MAX - 1] = '\0', \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)))
|
||||
|
||||
#endif /* JERROR_H */
|
||||
169
thirdparty/libjpeg-turbo/src/jfdctflt.c
vendored
Normal file
169
thirdparty/libjpeg-turbo/src/jfdctflt.c
vendored
Normal file
@@ -0,0 +1,169 @@
|
||||
/*
|
||||
* jfdctflt.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains a floating-point implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* This implementation should be more accurate than either of the integer
|
||||
* DCT implementations. However, it may not give the same results on all
|
||||
* machines because of differences in roundoff behavior. Speed will depend
|
||||
* on the hardware's floating point capacity.
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
* on each column. Direct algorithms are also available, but they are
|
||||
* much more complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README.ijg). The following
|
||||
* code is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with a fixed-point
|
||||
* implementation, accuracy is lost due to imprecise representation of the
|
||||
* scaled quantization values. However, that problem does not arise if
|
||||
* we use floating point arithmetic.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_fdct_float(FAST_FLOAT *data)
|
||||
{
|
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
||||
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
|
||||
FAST_FLOAT *dataptr;
|
||||
int ctr;
|
||||
|
||||
/* Pass 1: process rows. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[0] + dataptr[7];
|
||||
tmp7 = dataptr[0] - dataptr[7];
|
||||
tmp1 = dataptr[1] + dataptr[6];
|
||||
tmp6 = dataptr[1] - dataptr[6];
|
||||
tmp2 = dataptr[2] + dataptr[5];
|
||||
tmp5 = dataptr[2] - dataptr[5];
|
||||
tmp3 = dataptr[3] + dataptr[4];
|
||||
tmp4 = dataptr[3] - dataptr[4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[4] = tmp10 - tmp11;
|
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT)0.707106781); /* c4 */
|
||||
dataptr[2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT)0.382683433); /* c6 */
|
||||
z2 = ((FAST_FLOAT)0.541196100) * tmp10 + z5; /* c2-c6 */
|
||||
z4 = ((FAST_FLOAT)1.306562965) * tmp12 + z5; /* c2+c6 */
|
||||
z3 = tmp11 * ((FAST_FLOAT)0.707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */
|
||||
dataptr[3] = z13 - z2;
|
||||
dataptr[1] = z11 + z4;
|
||||
dataptr[7] = z11 - z4;
|
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
/* Pass 2: process columns. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7];
|
||||
tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7];
|
||||
tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6];
|
||||
tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6];
|
||||
tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5];
|
||||
tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5];
|
||||
tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4];
|
||||
tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[DCTSIZE * 0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[DCTSIZE * 4] = tmp10 - tmp11;
|
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT)0.707106781); /* c4 */
|
||||
dataptr[DCTSIZE * 2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[DCTSIZE * 6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT)0.382683433); /* c6 */
|
||||
z2 = ((FAST_FLOAT)0.541196100) * tmp10 + z5; /* c2-c6 */
|
||||
z4 = ((FAST_FLOAT)1.306562965) * tmp12 + z5; /* c2+c6 */
|
||||
z3 = tmp11 * ((FAST_FLOAT)0.707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[DCTSIZE * 5] = z13 + z2; /* phase 6 */
|
||||
dataptr[DCTSIZE * 3] = z13 - z2;
|
||||
dataptr[DCTSIZE * 1] = z11 + z4;
|
||||
dataptr[DCTSIZE * 7] = z11 - z4;
|
||||
|
||||
dataptr++; /* advance pointer to next column */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
||||
227
thirdparty/libjpeg-turbo/src/jfdctfst.c
vendored
Normal file
227
thirdparty/libjpeg-turbo/src/jfdctfst.c
vendored
Normal file
@@ -0,0 +1,227 @@
|
||||
/*
|
||||
* jfdctfst.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2015, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains a fast, not so accurate integer implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
* on each column. Direct algorithms are also available, but they are
|
||||
* much more complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README.ijg). The following
|
||||
* code is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with fixed-point math,
|
||||
* accuracy is lost due to imprecise representation of the scaled
|
||||
* quantization values. The smaller the quantization table entry, the less
|
||||
* precise the scaled value, so this implementation does worse with high-
|
||||
* quality-setting files than with low-quality ones.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jfdctint.c for more details. However, we choose to descale
|
||||
* (right shift) multiplication products as soon as they are formed,
|
||||
* rather than carrying additional fractional bits into subsequent additions.
|
||||
* This compromises accuracy slightly, but it lets us save a few shifts.
|
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
||||
* everywhere except in the multiplications proper; this saves a good deal
|
||||
* of work on 16-bit-int machines.
|
||||
*
|
||||
* Again to save a few shifts, the intermediate results between pass 1 and
|
||||
* pass 2 are not upscaled, but are represented only to integral precision.
|
||||
*
|
||||
* A final compromise is to represent the multiplicative constants to only
|
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
||||
* machines, and may also reduce the cost of multiplication (since there
|
||||
* are fewer one-bits in the constants).
|
||||
*/
|
||||
|
||||
#define CONST_BITS 8
|
||||
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 8
|
||||
#define FIX_0_382683433 ((JLONG)98) /* FIX(0.382683433) */
|
||||
#define FIX_0_541196100 ((JLONG)139) /* FIX(0.541196100) */
|
||||
#define FIX_0_707106781 ((JLONG)181) /* FIX(0.707106781) */
|
||||
#define FIX_1_306562965 ((JLONG)334) /* FIX(1.306562965) */
|
||||
#else
|
||||
#define FIX_0_382683433 FIX(0.382683433)
|
||||
#define FIX_0_541196100 FIX(0.541196100)
|
||||
#define FIX_0_707106781 FIX(0.707106781)
|
||||
#define FIX_1_306562965 FIX(1.306562965)
|
||||
#endif
|
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly
|
||||
* rounded result half the time...
|
||||
*/
|
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING
|
||||
#undef DESCALE
|
||||
#define DESCALE(x, n) RIGHT_SHIFT(x, n)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an JLONG constant, and immediately
|
||||
* descale to yield a DCTELEM result.
|
||||
*/
|
||||
|
||||
#define MULTIPLY(var, const) ((DCTELEM)DESCALE((var) * (const), CONST_BITS))
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jpeg_fdct_ifast(DCTELEM *data)
|
||||
{
|
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
DCTELEM tmp10, tmp11, tmp12, tmp13;
|
||||
DCTELEM z1, z2, z3, z4, z5, z11, z13;
|
||||
DCTELEM *dataptr;
|
||||
int ctr;
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process rows. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[0] + dataptr[7];
|
||||
tmp7 = dataptr[0] - dataptr[7];
|
||||
tmp1 = dataptr[1] + dataptr[6];
|
||||
tmp6 = dataptr[1] - dataptr[6];
|
||||
tmp2 = dataptr[2] + dataptr[5];
|
||||
tmp5 = dataptr[2] - dataptr[5];
|
||||
tmp3 = dataptr[3] + dataptr[4];
|
||||
tmp4 = dataptr[3] - dataptr[4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[4] = tmp10 - tmp11;
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
||||
dataptr[2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */
|
||||
dataptr[3] = z13 - z2;
|
||||
dataptr[1] = z11 + z4;
|
||||
dataptr[7] = z11 - z4;
|
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
/* Pass 2: process columns. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7];
|
||||
tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7];
|
||||
tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6];
|
||||
tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6];
|
||||
tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5];
|
||||
tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5];
|
||||
tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4];
|
||||
tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[DCTSIZE * 0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[DCTSIZE * 4] = tmp10 - tmp11;
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
||||
dataptr[DCTSIZE * 2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[DCTSIZE * 6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[DCTSIZE * 5] = z13 + z2; /* phase 6 */
|
||||
dataptr[DCTSIZE * 3] = z13 - z2;
|
||||
dataptr[DCTSIZE * 1] = z11 + z4;
|
||||
dataptr[DCTSIZE * 7] = z11 - z4;
|
||||
|
||||
dataptr++; /* advance pointer to next column */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */
|
||||
288
thirdparty/libjpeg-turbo/src/jfdctint.c
vendored
Normal file
288
thirdparty/libjpeg-turbo/src/jfdctint.c
vendored
Normal file
@@ -0,0 +1,288 @@
|
||||
/*
|
||||
* jfdctint.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2015, 2020, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains a slower but more accurate integer implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
* on each column. Direct algorithms are also available, but they are
|
||||
* much more complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on an algorithm described in
|
||||
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
|
||||
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
|
||||
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
|
||||
* The primary algorithm described there uses 11 multiplies and 29 adds.
|
||||
* We use their alternate method with 12 multiplies and 32 adds.
|
||||
* The advantage of this method is that no data path contains more than one
|
||||
* multiplication; this allows a very simple and accurate implementation in
|
||||
* scaled fixed-point arithmetic, with a minimal number of shifts.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* The poop on this scaling stuff is as follows:
|
||||
*
|
||||
* Each 1-D DCT step produces outputs which are a factor of sqrt(N)
|
||||
* larger than the true DCT outputs. The final outputs are therefore
|
||||
* a factor of N larger than desired; since N=8 this can be cured by
|
||||
* a simple right shift at the end of the algorithm. The advantage of
|
||||
* this arrangement is that we save two multiplications per 1-D DCT,
|
||||
* because the y0 and y4 outputs need not be divided by sqrt(N).
|
||||
* In the IJG code, this factor of 8 is removed by the quantization step
|
||||
* (in jcdctmgr.c), NOT in this module.
|
||||
*
|
||||
* We have to do addition and subtraction of the integer inputs, which
|
||||
* is no problem, and multiplication by fractional constants, which is
|
||||
* a problem to do in integer arithmetic. We multiply all the constants
|
||||
* by CONST_SCALE and convert them to integer constants (thus retaining
|
||||
* CONST_BITS bits of precision in the constants). After doing a
|
||||
* multiplication we have to divide the product by CONST_SCALE, with proper
|
||||
* rounding, to produce the correct output. This division can be done
|
||||
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
|
||||
* as long as possible so that partial sums can be added together with
|
||||
* full fractional precision.
|
||||
*
|
||||
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
|
||||
* they are represented to better-than-integral precision. These outputs
|
||||
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
|
||||
* with the recommended scaling. (For 12-bit sample data, the intermediate
|
||||
* array is JLONG anyway.)
|
||||
*
|
||||
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
|
||||
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
|
||||
* shows that the values given below are the most effective.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 2
|
||||
#else
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 13
|
||||
#define FIX_0_298631336 ((JLONG)2446) /* FIX(0.298631336) */
|
||||
#define FIX_0_390180644 ((JLONG)3196) /* FIX(0.390180644) */
|
||||
#define FIX_0_541196100 ((JLONG)4433) /* FIX(0.541196100) */
|
||||
#define FIX_0_765366865 ((JLONG)6270) /* FIX(0.765366865) */
|
||||
#define FIX_0_899976223 ((JLONG)7373) /* FIX(0.899976223) */
|
||||
#define FIX_1_175875602 ((JLONG)9633) /* FIX(1.175875602) */
|
||||
#define FIX_1_501321110 ((JLONG)12299) /* FIX(1.501321110) */
|
||||
#define FIX_1_847759065 ((JLONG)15137) /* FIX(1.847759065) */
|
||||
#define FIX_1_961570560 ((JLONG)16069) /* FIX(1.961570560) */
|
||||
#define FIX_2_053119869 ((JLONG)16819) /* FIX(2.053119869) */
|
||||
#define FIX_2_562915447 ((JLONG)20995) /* FIX(2.562915447) */
|
||||
#define FIX_3_072711026 ((JLONG)25172) /* FIX(3.072711026) */
|
||||
#else
|
||||
#define FIX_0_298631336 FIX(0.298631336)
|
||||
#define FIX_0_390180644 FIX(0.390180644)
|
||||
#define FIX_0_541196100 FIX(0.541196100)
|
||||
#define FIX_0_765366865 FIX(0.765366865)
|
||||
#define FIX_0_899976223 FIX(0.899976223)
|
||||
#define FIX_1_175875602 FIX(1.175875602)
|
||||
#define FIX_1_501321110 FIX(1.501321110)
|
||||
#define FIX_1_847759065 FIX(1.847759065)
|
||||
#define FIX_1_961570560 FIX(1.961570560)
|
||||
#define FIX_2_053119869 FIX(2.053119869)
|
||||
#define FIX_2_562915447 FIX(2.562915447)
|
||||
#define FIX_3_072711026 FIX(3.072711026)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply an JLONG variable by an JLONG constant to yield an JLONG result.
|
||||
* For 8-bit samples with the recommended scaling, all the variable
|
||||
* and constant values involved are no more than 16 bits wide, so a
|
||||
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
||||
* For 12-bit samples, a full 32-bit multiplication will be needed.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define MULTIPLY(var, const) MULTIPLY16C16(var, const)
|
||||
#else
|
||||
#define MULTIPLY(var, const) ((var) * (const))
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jpeg_fdct_islow(DCTELEM *data)
|
||||
{
|
||||
JLONG tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
JLONG tmp10, tmp11, tmp12, tmp13;
|
||||
JLONG z1, z2, z3, z4, z5;
|
||||
DCTELEM *dataptr;
|
||||
int ctr;
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process rows. */
|
||||
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
|
||||
/* furthermore, we scale the results by 2**PASS1_BITS. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[0] + dataptr[7];
|
||||
tmp7 = dataptr[0] - dataptr[7];
|
||||
tmp1 = dataptr[1] + dataptr[6];
|
||||
tmp6 = dataptr[1] - dataptr[6];
|
||||
tmp2 = dataptr[2] + dataptr[5];
|
||||
tmp5 = dataptr[2] - dataptr[5];
|
||||
tmp3 = dataptr[3] + dataptr[4];
|
||||
tmp4 = dataptr[3] - dataptr[4];
|
||||
|
||||
/* Even part per LL&M figure 1 --- note that published figure is faulty;
|
||||
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
|
||||
*/
|
||||
|
||||
tmp10 = tmp0 + tmp3;
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[0] = (DCTELEM)LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS);
|
||||
dataptr[4] = (DCTELEM)LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS);
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
||||
dataptr[2] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
||||
CONST_BITS - PASS1_BITS);
|
||||
dataptr[6] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp12, -FIX_1_847759065),
|
||||
CONST_BITS - PASS1_BITS);
|
||||
|
||||
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
|
||||
* cK represents cos(K*pi/16).
|
||||
* i0..i3 in the paper are tmp4..tmp7 here.
|
||||
*/
|
||||
|
||||
z1 = tmp4 + tmp7;
|
||||
z2 = tmp5 + tmp6;
|
||||
z3 = tmp4 + tmp6;
|
||||
z4 = tmp5 + tmp7;
|
||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
||||
|
||||
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
||||
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
||||
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
||||
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
||||
z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */
|
||||
z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
||||
z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
||||
z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */
|
||||
|
||||
z3 += z5;
|
||||
z4 += z5;
|
||||
|
||||
dataptr[7] = (DCTELEM)DESCALE(tmp4 + z1 + z3, CONST_BITS - PASS1_BITS);
|
||||
dataptr[5] = (DCTELEM)DESCALE(tmp5 + z2 + z4, CONST_BITS - PASS1_BITS);
|
||||
dataptr[3] = (DCTELEM)DESCALE(tmp6 + z2 + z3, CONST_BITS - PASS1_BITS);
|
||||
dataptr[1] = (DCTELEM)DESCALE(tmp7 + z1 + z4, CONST_BITS - PASS1_BITS);
|
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
/* Pass 2: process columns.
|
||||
* We remove the PASS1_BITS scaling, but leave the results scaled up
|
||||
* by an overall factor of 8.
|
||||
*/
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7];
|
||||
tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7];
|
||||
tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6];
|
||||
tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6];
|
||||
tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5];
|
||||
tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5];
|
||||
tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4];
|
||||
tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4];
|
||||
|
||||
/* Even part per LL&M figure 1 --- note that published figure is faulty;
|
||||
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
|
||||
*/
|
||||
|
||||
tmp10 = tmp0 + tmp3;
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[DCTSIZE * 0] = (DCTELEM)DESCALE(tmp10 + tmp11, PASS1_BITS);
|
||||
dataptr[DCTSIZE * 4] = (DCTELEM)DESCALE(tmp10 - tmp11, PASS1_BITS);
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
||||
dataptr[DCTSIZE * 2] =
|
||||
(DCTELEM)DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
||||
CONST_BITS + PASS1_BITS);
|
||||
dataptr[DCTSIZE * 6] =
|
||||
(DCTELEM)DESCALE(z1 + MULTIPLY(tmp12, -FIX_1_847759065),
|
||||
CONST_BITS + PASS1_BITS);
|
||||
|
||||
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
|
||||
* cK represents cos(K*pi/16).
|
||||
* i0..i3 in the paper are tmp4..tmp7 here.
|
||||
*/
|
||||
|
||||
z1 = tmp4 + tmp7;
|
||||
z2 = tmp5 + tmp6;
|
||||
z3 = tmp4 + tmp6;
|
||||
z4 = tmp5 + tmp7;
|
||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
||||
|
||||
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
||||
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
||||
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
||||
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
||||
z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */
|
||||
z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
||||
z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
||||
z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */
|
||||
|
||||
z3 += z5;
|
||||
z4 += z5;
|
||||
|
||||
dataptr[DCTSIZE * 7] = (DCTELEM)DESCALE(tmp4 + z1 + z3,
|
||||
CONST_BITS + PASS1_BITS);
|
||||
dataptr[DCTSIZE * 5] = (DCTELEM)DESCALE(tmp5 + z2 + z4,
|
||||
CONST_BITS + PASS1_BITS);
|
||||
dataptr[DCTSIZE * 3] = (DCTELEM)DESCALE(tmp6 + z2 + z3,
|
||||
CONST_BITS + PASS1_BITS);
|
||||
dataptr[DCTSIZE * 1] = (DCTELEM)DESCALE(tmp7 + z1 + z4,
|
||||
CONST_BITS + PASS1_BITS);
|
||||
|
||||
dataptr++; /* advance pointer to next column */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_ISLOW_SUPPORTED */
|
||||
240
thirdparty/libjpeg-turbo/src/jidctflt.c
vendored
Normal file
240
thirdparty/libjpeg-turbo/src/jidctflt.c
vendored
Normal file
@@ -0,0 +1,240 @@
|
||||
/*
|
||||
* jidctflt.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* Modified 2010 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2014, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains a floating-point implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
* must also perform dequantization of the input coefficients.
|
||||
*
|
||||
* This implementation should be more accurate than either of the integer
|
||||
* IDCT implementations. However, it may not give the same results on all
|
||||
* machines because of differences in roundoff behavior. Speed will depend
|
||||
* on the hardware's floating point capacity.
|
||||
*
|
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||
* a time). Direct algorithms are also available, but they are much more
|
||||
* complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README.ijg). The following
|
||||
* code is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with a fixed-point
|
||||
* implementation, accuracy is lost due to imprecise representation of the
|
||||
* scaled quantization values. However, that problem does not arise if
|
||||
* we use floating point arithmetic.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a float result.
|
||||
*/
|
||||
|
||||
#define DEQUANTIZE(coef, quantval) (((FAST_FLOAT)(coef)) * (quantval))
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jpeg_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col)
|
||||
{
|
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
||||
FAST_FLOAT z5, z10, z11, z12, z13;
|
||||
JCOEFPTR inptr;
|
||||
FLOAT_MULT_TYPE *quantptr;
|
||||
FAST_FLOAT *wsptr;
|
||||
_JSAMPROW outptr;
|
||||
_JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
int ctr;
|
||||
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
|
||||
#define _0_125 ((FLOAT_MULT_TYPE)0.125)
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (FLOAT_MULT_TYPE *)compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this
|
||||
* by short-circuiting the IDCT calculation for any column in which all
|
||||
* the AC terms are zero. In that case each output is equal to the
|
||||
* DC coefficient (with scale factor as needed).
|
||||
* With typical images and quantization tables, half or more of the
|
||||
* column DCT calculations can be simplified this way.
|
||||
*/
|
||||
|
||||
if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
|
||||
inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 &&
|
||||
inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 &&
|
||||
inptr[DCTSIZE * 7] == 0) {
|
||||
/* AC terms all zero */
|
||||
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE * 0],
|
||||
quantptr[DCTSIZE * 0] * _0_125);
|
||||
|
||||
wsptr[DCTSIZE * 0] = dcval;
|
||||
wsptr[DCTSIZE * 1] = dcval;
|
||||
wsptr[DCTSIZE * 2] = dcval;
|
||||
wsptr[DCTSIZE * 3] = dcval;
|
||||
wsptr[DCTSIZE * 4] = dcval;
|
||||
wsptr[DCTSIZE * 5] = dcval;
|
||||
wsptr[DCTSIZE * 6] = dcval;
|
||||
wsptr[DCTSIZE * 7] = dcval;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] * _0_125);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2] * _0_125);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4] * _0_125);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6] * _0_125);
|
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||
tmp11 = tmp0 - tmp2;
|
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
||||
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT)1.414213562) - tmp13; /* 2*c4 */
|
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1] * _0_125);
|
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3] * _0_125);
|
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5] * _0_125);
|
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7] * _0_125);
|
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */
|
||||
z10 = tmp6 - tmp5;
|
||||
z11 = tmp4 + tmp7;
|
||||
z12 = tmp4 - tmp7;
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT)1.414213562); /* 2*c4 */
|
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT)1.847759065); /* 2*c2 */
|
||||
tmp10 = z5 - z12 * ((FAST_FLOAT)1.082392200); /* 2*(c2-c6) */
|
||||
tmp12 = z5 - z10 * ((FAST_FLOAT)2.613125930); /* 2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 - tmp5;
|
||||
|
||||
wsptr[DCTSIZE * 0] = tmp0 + tmp7;
|
||||
wsptr[DCTSIZE * 7] = tmp0 - tmp7;
|
||||
wsptr[DCTSIZE * 1] = tmp1 + tmp6;
|
||||
wsptr[DCTSIZE * 6] = tmp1 - tmp6;
|
||||
wsptr[DCTSIZE * 2] = tmp2 + tmp5;
|
||||
wsptr[DCTSIZE * 5] = tmp2 - tmp5;
|
||||
wsptr[DCTSIZE * 3] = tmp3 + tmp4;
|
||||
wsptr[DCTSIZE * 4] = tmp3 - tmp4;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
}
|
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so
|
||||
* the simplification applies less often (typically 5% to 10% of the time).
|
||||
* And testing floats for zero is relatively expensive, so we don't bother.
|
||||
*/
|
||||
|
||||
/* Even part */
|
||||
|
||||
/* Apply signed->unsigned and prepare float->int conversion */
|
||||
z5 = wsptr[0] + ((FAST_FLOAT)_CENTERJSAMPLE + (FAST_FLOAT)0.5);
|
||||
tmp10 = z5 + wsptr[4];
|
||||
tmp11 = z5 - wsptr[4];
|
||||
|
||||
tmp13 = wsptr[2] + wsptr[6];
|
||||
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT)1.414213562) - tmp13;
|
||||
|
||||
tmp0 = tmp10 + tmp13;
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z13 = wsptr[5] + wsptr[3];
|
||||
z10 = wsptr[5] - wsptr[3];
|
||||
z11 = wsptr[1] + wsptr[7];
|
||||
z12 = wsptr[1] - wsptr[7];
|
||||
|
||||
tmp7 = z11 + z13;
|
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT)1.414213562);
|
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT)1.847759065); /* 2*c2 */
|
||||
tmp10 = z5 - z12 * ((FAST_FLOAT)1.082392200); /* 2*(c2-c6) */
|
||||
tmp12 = z5 - z10 * ((FAST_FLOAT)2.613125930); /* 2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7;
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 - tmp5;
|
||||
|
||||
/* Final output stage: float->int conversion and range-limit */
|
||||
|
||||
outptr[0] = range_limit[((int)(tmp0 + tmp7)) & RANGE_MASK];
|
||||
outptr[7] = range_limit[((int)(tmp0 - tmp7)) & RANGE_MASK];
|
||||
outptr[1] = range_limit[((int)(tmp1 + tmp6)) & RANGE_MASK];
|
||||
outptr[6] = range_limit[((int)(tmp1 - tmp6)) & RANGE_MASK];
|
||||
outptr[2] = range_limit[((int)(tmp2 + tmp5)) & RANGE_MASK];
|
||||
outptr[5] = range_limit[((int)(tmp2 - tmp5)) & RANGE_MASK];
|
||||
outptr[3] = range_limit[((int)(tmp3 + tmp4)) & RANGE_MASK];
|
||||
outptr[4] = range_limit[((int)(tmp3 - tmp4)) & RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
||||
371
thirdparty/libjpeg-turbo/src/jidctfst.c
vendored
Normal file
371
thirdparty/libjpeg-turbo/src/jidctfst.c
vendored
Normal file
@@ -0,0 +1,371 @@
|
||||
/*
|
||||
* jidctfst.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2015, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains a fast, not so accurate integer implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
* must also perform dequantization of the input coefficients.
|
||||
*
|
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||
* a time). Direct algorithms are also available, but they are much more
|
||||
* complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README.ijg). The following
|
||||
* code is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with fixed-point math,
|
||||
* accuracy is lost due to imprecise representation of the scaled
|
||||
* quantization values. The smaller the quantization table entry, the less
|
||||
* precise the scaled value, so this implementation does worse with high-
|
||||
* quality-setting files than with low-quality ones.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jidctint.c for more details. However, we choose to descale
|
||||
* (right shift) multiplication products as soon as they are formed,
|
||||
* rather than carrying additional fractional bits into subsequent additions.
|
||||
* This compromises accuracy slightly, but it lets us save a few shifts.
|
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
||||
* everywhere except in the multiplications proper; this saves a good deal
|
||||
* of work on 16-bit-int machines.
|
||||
*
|
||||
* The dequantized coefficients are not integers because the AA&N scaling
|
||||
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
|
||||
* so that the first and second IDCT rounds have the same input scaling.
|
||||
* For 8-bit samples, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
|
||||
* avoid a descaling shift; this compromises accuracy rather drastically
|
||||
* for small quantization table entries, but it saves a lot of shifts.
|
||||
* For 12-bit samples, there's no hope of using 16x16 multiplies anyway,
|
||||
* so we use a much larger scaling factor to preserve accuracy.
|
||||
*
|
||||
* A final compromise is to represent the multiplicative constants to only
|
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
||||
* machines, and may also reduce the cost of multiplication (since there
|
||||
* are fewer one-bits in the constants).
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define CONST_BITS 8
|
||||
#define PASS1_BITS 2
|
||||
#else
|
||||
#define CONST_BITS 8
|
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 8
|
||||
#define FIX_1_082392200 ((JLONG)277) /* FIX(1.082392200) */
|
||||
#define FIX_1_414213562 ((JLONG)362) /* FIX(1.414213562) */
|
||||
#define FIX_1_847759065 ((JLONG)473) /* FIX(1.847759065) */
|
||||
#define FIX_2_613125930 ((JLONG)669) /* FIX(2.613125930) */
|
||||
#else
|
||||
#define FIX_1_082392200 FIX(1.082392200)
|
||||
#define FIX_1_414213562 FIX(1.414213562)
|
||||
#define FIX_1_847759065 FIX(1.847759065)
|
||||
#define FIX_2_613125930 FIX(2.613125930)
|
||||
#endif
|
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly
|
||||
* rounded result half the time...
|
||||
*/
|
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING
|
||||
#undef DESCALE
|
||||
#define DESCALE(x, n) RIGHT_SHIFT(x, n)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an JLONG constant, and immediately
|
||||
* descale to yield a DCTELEM result.
|
||||
*/
|
||||
|
||||
#define MULTIPLY(var, const) ((DCTELEM)DESCALE((var) * (const), CONST_BITS))
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
|
||||
* multiplication will do. For 12-bit data, the multiplier table is
|
||||
* declared JLONG, so a 32-bit multiply will be used.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define DEQUANTIZE(coef, quantval) (((IFAST_MULT_TYPE)(coef)) * (quantval))
|
||||
#else
|
||||
#define DEQUANTIZE(coef, quantval) \
|
||||
DESCALE((coef) * (quantval), IFAST_SCALE_BITS - PASS1_BITS)
|
||||
#endif
|
||||
|
||||
|
||||
/* Like DESCALE, but applies to a DCTELEM and produces an int.
|
||||
* We assume that int right shift is unsigned if JLONG right shift is.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define ISHIFT_TEMPS DCTELEM ishift_temp;
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
|
||||
#else
|
||||
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
|
||||
#endif
|
||||
#define IRIGHT_SHIFT(x, shft) \
|
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~((DCTELEM)0)) << (DCTELEMBITS - (shft))) : \
|
||||
(ishift_temp >> (shft)))
|
||||
#else
|
||||
#define ISHIFT_TEMPS
|
||||
#define IRIGHT_SHIFT(x, shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
#ifdef USE_ACCURATE_ROUNDING
|
||||
#define IDESCALE(x, n) ((int)IRIGHT_SHIFT((x) + (1 << ((n) - 1)), n))
|
||||
#else
|
||||
#define IDESCALE(x, n) ((int)IRIGHT_SHIFT(x, n))
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jpeg_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col)
|
||||
{
|
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
DCTELEM tmp10, tmp11, tmp12, tmp13;
|
||||
DCTELEM z5, z10, z11, z12, z13;
|
||||
JCOEFPTR inptr;
|
||||
IFAST_MULT_TYPE *quantptr;
|
||||
int *wsptr;
|
||||
_JSAMPROW outptr;
|
||||
_JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
int workspace[DCTSIZE2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS /* for DESCALE */
|
||||
ISHIFT_TEMPS /* for IDESCALE */
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (IFAST_MULT_TYPE *)compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this
|
||||
* by short-circuiting the IDCT calculation for any column in which all
|
||||
* the AC terms are zero. In that case each output is equal to the
|
||||
* DC coefficient (with scale factor as needed).
|
||||
* With typical images and quantization tables, half or more of the
|
||||
* column DCT calculations can be simplified this way.
|
||||
*/
|
||||
|
||||
if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
|
||||
inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 &&
|
||||
inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 &&
|
||||
inptr[DCTSIZE * 7] == 0) {
|
||||
/* AC terms all zero */
|
||||
int dcval = (int)DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
|
||||
|
||||
wsptr[DCTSIZE * 0] = dcval;
|
||||
wsptr[DCTSIZE * 1] = dcval;
|
||||
wsptr[DCTSIZE * 2] = dcval;
|
||||
wsptr[DCTSIZE * 3] = dcval;
|
||||
wsptr[DCTSIZE * 4] = dcval;
|
||||
wsptr[DCTSIZE * 5] = dcval;
|
||||
wsptr[DCTSIZE * 6] = dcval;
|
||||
wsptr[DCTSIZE * 7] = dcval;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
|
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||
tmp11 = tmp0 - tmp2;
|
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
||||
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
|
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
|
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
|
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
|
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
|
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */
|
||||
z10 = tmp6 - tmp5;
|
||||
z11 = tmp4 + tmp7;
|
||||
z12 = tmp4 - tmp7;
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
||||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
|
||||
tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
wsptr[DCTSIZE * 0] = (int)(tmp0 + tmp7);
|
||||
wsptr[DCTSIZE * 7] = (int)(tmp0 - tmp7);
|
||||
wsptr[DCTSIZE * 1] = (int)(tmp1 + tmp6);
|
||||
wsptr[DCTSIZE * 6] = (int)(tmp1 - tmp6);
|
||||
wsptr[DCTSIZE * 2] = (int)(tmp2 + tmp5);
|
||||
wsptr[DCTSIZE * 5] = (int)(tmp2 - tmp5);
|
||||
wsptr[DCTSIZE * 4] = (int)(tmp3 + tmp4);
|
||||
wsptr[DCTSIZE * 3] = (int)(tmp3 - tmp4);
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
}
|
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */
|
||||
/* Note that we must descale the results by a factor of 8 == 2**3, */
|
||||
/* and also undo the PASS1_BITS scaling. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so
|
||||
* the simplification applies less often (typically 5% to 10% of the time).
|
||||
* On machines with very fast multiplication, it's possible that the
|
||||
* test takes more time than it's worth. In that case this section
|
||||
* may be commented out.
|
||||
*/
|
||||
|
||||
#ifndef NO_ZERO_ROW_TEST
|
||||
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
|
||||
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
|
||||
/* AC terms all zero */
|
||||
_JSAMPLE dcval =
|
||||
range_limit[IDESCALE(wsptr[0], PASS1_BITS + 3) & RANGE_MASK];
|
||||
|
||||
outptr[0] = dcval;
|
||||
outptr[1] = dcval;
|
||||
outptr[2] = dcval;
|
||||
outptr[3] = dcval;
|
||||
outptr[4] = dcval;
|
||||
outptr[5] = dcval;
|
||||
outptr[6] = dcval;
|
||||
outptr[7] = dcval;
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = ((DCTELEM)wsptr[0] + (DCTELEM)wsptr[4]);
|
||||
tmp11 = ((DCTELEM)wsptr[0] - (DCTELEM)wsptr[4]);
|
||||
|
||||
tmp13 = ((DCTELEM)wsptr[2] + (DCTELEM)wsptr[6]);
|
||||
tmp12 =
|
||||
MULTIPLY((DCTELEM)wsptr[2] - (DCTELEM)wsptr[6], FIX_1_414213562) - tmp13;
|
||||
|
||||
tmp0 = tmp10 + tmp13;
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z13 = (DCTELEM)wsptr[5] + (DCTELEM)wsptr[3];
|
||||
z10 = (DCTELEM)wsptr[5] - (DCTELEM)wsptr[3];
|
||||
z11 = (DCTELEM)wsptr[1] + (DCTELEM)wsptr[7];
|
||||
z12 = (DCTELEM)wsptr[1] - (DCTELEM)wsptr[7];
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
||||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
|
||||
tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
/* Final output stage: scale down by a factor of 8 and range-limit */
|
||||
|
||||
outptr[0] =
|
||||
range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS + 3) & RANGE_MASK];
|
||||
outptr[7] =
|
||||
range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS + 3) & RANGE_MASK];
|
||||
outptr[1] =
|
||||
range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS + 3) & RANGE_MASK];
|
||||
outptr[6] =
|
||||
range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS + 3) & RANGE_MASK];
|
||||
outptr[2] =
|
||||
range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS + 3) & RANGE_MASK];
|
||||
outptr[5] =
|
||||
range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS + 3) & RANGE_MASK];
|
||||
outptr[4] =
|
||||
range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS + 3) & RANGE_MASK];
|
||||
outptr[3] =
|
||||
range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS + 3) & RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */
|
||||
2627
thirdparty/libjpeg-turbo/src/jidctint.c
vendored
Normal file
2627
thirdparty/libjpeg-turbo/src/jidctint.c
vendored
Normal file
File diff suppressed because it is too large
Load Diff
409
thirdparty/libjpeg-turbo/src/jidctred.c
vendored
Normal file
409
thirdparty/libjpeg-turbo/src/jidctred.c
vendored
Normal file
@@ -0,0 +1,409 @@
|
||||
/*
|
||||
* jidctred.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2015, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains inverse-DCT routines that produce reduced-size output:
|
||||
* either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
|
||||
*
|
||||
* The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
|
||||
* algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
|
||||
* with an 8-to-4 step that produces the four averages of two adjacent outputs
|
||||
* (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
|
||||
* These steps were derived by computing the corresponding values at the end
|
||||
* of the normal LL&M code, then simplifying as much as possible.
|
||||
*
|
||||
* 1x1 is trivial: just take the DC coefficient divided by 8.
|
||||
*
|
||||
* See jidctint.c for additional comments.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Scaling is the same as in jidctint.c. */
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 2
|
||||
#else
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 13
|
||||
#define FIX_0_211164243 ((JLONG)1730) /* FIX(0.211164243) */
|
||||
#define FIX_0_509795579 ((JLONG)4176) /* FIX(0.509795579) */
|
||||
#define FIX_0_601344887 ((JLONG)4926) /* FIX(0.601344887) */
|
||||
#define FIX_0_720959822 ((JLONG)5906) /* FIX(0.720959822) */
|
||||
#define FIX_0_765366865 ((JLONG)6270) /* FIX(0.765366865) */
|
||||
#define FIX_0_850430095 ((JLONG)6967) /* FIX(0.850430095) */
|
||||
#define FIX_0_899976223 ((JLONG)7373) /* FIX(0.899976223) */
|
||||
#define FIX_1_061594337 ((JLONG)8697) /* FIX(1.061594337) */
|
||||
#define FIX_1_272758580 ((JLONG)10426) /* FIX(1.272758580) */
|
||||
#define FIX_1_451774981 ((JLONG)11893) /* FIX(1.451774981) */
|
||||
#define FIX_1_847759065 ((JLONG)15137) /* FIX(1.847759065) */
|
||||
#define FIX_2_172734803 ((JLONG)17799) /* FIX(2.172734803) */
|
||||
#define FIX_2_562915447 ((JLONG)20995) /* FIX(2.562915447) */
|
||||
#define FIX_3_624509785 ((JLONG)29692) /* FIX(3.624509785) */
|
||||
#else
|
||||
#define FIX_0_211164243 FIX(0.211164243)
|
||||
#define FIX_0_509795579 FIX(0.509795579)
|
||||
#define FIX_0_601344887 FIX(0.601344887)
|
||||
#define FIX_0_720959822 FIX(0.720959822)
|
||||
#define FIX_0_765366865 FIX(0.765366865)
|
||||
#define FIX_0_850430095 FIX(0.850430095)
|
||||
#define FIX_0_899976223 FIX(0.899976223)
|
||||
#define FIX_1_061594337 FIX(1.061594337)
|
||||
#define FIX_1_272758580 FIX(1.272758580)
|
||||
#define FIX_1_451774981 FIX(1.451774981)
|
||||
#define FIX_1_847759065 FIX(1.847759065)
|
||||
#define FIX_2_172734803 FIX(2.172734803)
|
||||
#define FIX_2_562915447 FIX(2.562915447)
|
||||
#define FIX_3_624509785 FIX(3.624509785)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
|
||||
* For 8-bit samples with the recommended scaling, all the variable
|
||||
* and constant values involved are no more than 16 bits wide, so a
|
||||
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
||||
* For 12-bit samples, a full 32-bit multiplication will be needed.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define MULTIPLY(var, const) MULTIPLY16C16(var, const)
|
||||
#else
|
||||
#define MULTIPLY(var, const) ((var) * (const))
|
||||
#endif
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce an int result. In this module, both inputs and result
|
||||
* are 16 bits or less, so either int or short multiply will work.
|
||||
*/
|
||||
|
||||
#define DEQUANTIZE(coef, quantval) (((ISLOW_MULT_TYPE)(coef)) * (quantval))
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients,
|
||||
* producing a reduced-size 4x4 output block.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jpeg_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col)
|
||||
{
|
||||
JLONG tmp0, tmp2, tmp10, tmp12;
|
||||
JLONG z1, z2, z3, z4;
|
||||
JCOEFPTR inptr;
|
||||
ISLOW_MULT_TYPE *quantptr;
|
||||
int *wsptr;
|
||||
_JSAMPROW outptr;
|
||||
_JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
int workspace[DCTSIZE * 4]; /* buffers data between passes */
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
|
||||
/* Don't bother to process column 4, because second pass won't use it */
|
||||
if (ctr == DCTSIZE - 4)
|
||||
continue;
|
||||
if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
|
||||
inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 5] == 0 &&
|
||||
inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) {
|
||||
/* AC terms all zero; we need not examine term 4 for 4x4 output */
|
||||
int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
|
||||
quantptr[DCTSIZE * 0]), PASS1_BITS);
|
||||
|
||||
wsptr[DCTSIZE * 0] = dcval;
|
||||
wsptr[DCTSIZE * 1] = dcval;
|
||||
wsptr[DCTSIZE * 2] = dcval;
|
||||
wsptr[DCTSIZE * 3] = dcval;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
|
||||
tmp0 = LEFT_SHIFT(tmp0, CONST_BITS + 1);
|
||||
|
||||
z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
|
||||
z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
|
||||
|
||||
tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, -FIX_0_765366865);
|
||||
|
||||
tmp10 = tmp0 + tmp2;
|
||||
tmp12 = tmp0 - tmp2;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
|
||||
z2 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
|
||||
z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
|
||||
z4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
|
||||
|
||||
tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */
|
||||
MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */
|
||||
MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */
|
||||
MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */
|
||||
|
||||
tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */
|
||||
MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */
|
||||
MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */
|
||||
MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
|
||||
|
||||
/* Final output stage */
|
||||
|
||||
wsptr[DCTSIZE * 0] =
|
||||
(int)DESCALE(tmp10 + tmp2, CONST_BITS - PASS1_BITS + 1);
|
||||
wsptr[DCTSIZE * 3] =
|
||||
(int)DESCALE(tmp10 - tmp2, CONST_BITS - PASS1_BITS + 1);
|
||||
wsptr[DCTSIZE * 1] =
|
||||
(int)DESCALE(tmp12 + tmp0, CONST_BITS - PASS1_BITS + 1);
|
||||
wsptr[DCTSIZE * 2] =
|
||||
(int)DESCALE(tmp12 - tmp0, CONST_BITS - PASS1_BITS + 1);
|
||||
}
|
||||
|
||||
/* Pass 2: process 4 rows from work array, store into output array. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < 4; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* It's not clear whether a zero row test is worthwhile here ... */
|
||||
|
||||
#ifndef NO_ZERO_ROW_TEST
|
||||
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
|
||||
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
|
||||
/* AC terms all zero */
|
||||
_JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
|
||||
PASS1_BITS + 3) & RANGE_MASK];
|
||||
|
||||
outptr[0] = dcval;
|
||||
outptr[1] = dcval;
|
||||
outptr[2] = dcval;
|
||||
outptr[3] = dcval;
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 1);
|
||||
|
||||
tmp2 = MULTIPLY((JLONG)wsptr[2], FIX_1_847759065) +
|
||||
MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865);
|
||||
|
||||
tmp10 = tmp0 + tmp2;
|
||||
tmp12 = tmp0 - tmp2;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z1 = (JLONG)wsptr[7];
|
||||
z2 = (JLONG)wsptr[5];
|
||||
z3 = (JLONG)wsptr[3];
|
||||
z4 = (JLONG)wsptr[1];
|
||||
|
||||
tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */
|
||||
MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */
|
||||
MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */
|
||||
MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */
|
||||
|
||||
tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */
|
||||
MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */
|
||||
MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */
|
||||
MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
|
||||
|
||||
/* Final output stage */
|
||||
|
||||
outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp2,
|
||||
CONST_BITS + PASS1_BITS + 3 + 1) &
|
||||
RANGE_MASK];
|
||||
outptr[3] = range_limit[(int)DESCALE(tmp10 - tmp2,
|
||||
CONST_BITS + PASS1_BITS + 3 + 1) &
|
||||
RANGE_MASK];
|
||||
outptr[1] = range_limit[(int)DESCALE(tmp12 + tmp0,
|
||||
CONST_BITS + PASS1_BITS + 3 + 1) &
|
||||
RANGE_MASK];
|
||||
outptr[2] = range_limit[(int)DESCALE(tmp12 - tmp0,
|
||||
CONST_BITS + PASS1_BITS + 3 + 1) &
|
||||
RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients,
|
||||
* producing a reduced-size 2x2 output block.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jpeg_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col)
|
||||
{
|
||||
JLONG tmp0, tmp10, z1;
|
||||
JCOEFPTR inptr;
|
||||
ISLOW_MULT_TYPE *quantptr;
|
||||
int *wsptr;
|
||||
_JSAMPROW outptr;
|
||||
_JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
int workspace[DCTSIZE * 2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
|
||||
/* Don't bother to process columns 2,4,6 */
|
||||
if (ctr == DCTSIZE - 2 || ctr == DCTSIZE - 4 || ctr == DCTSIZE - 6)
|
||||
continue;
|
||||
if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 3] == 0 &&
|
||||
inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 7] == 0) {
|
||||
/* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
|
||||
int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
|
||||
quantptr[DCTSIZE * 0]), PASS1_BITS);
|
||||
|
||||
wsptr[DCTSIZE * 0] = dcval;
|
||||
wsptr[DCTSIZE * 1] = dcval;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
|
||||
tmp10 = LEFT_SHIFT(z1, CONST_BITS + 2);
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
|
||||
tmp0 = MULTIPLY(z1, -FIX_0_720959822); /* sqrt(2) * ( c7-c5+c3-c1) */
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
|
||||
tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
|
||||
tmp0 += MULTIPLY(z1, -FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
|
||||
tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * ( c1+c3+c5+c7) */
|
||||
|
||||
/* Final output stage */
|
||||
|
||||
wsptr[DCTSIZE * 0] =
|
||||
(int)DESCALE(tmp10 + tmp0, CONST_BITS - PASS1_BITS + 2);
|
||||
wsptr[DCTSIZE * 1] =
|
||||
(int)DESCALE(tmp10 - tmp0, CONST_BITS - PASS1_BITS + 2);
|
||||
}
|
||||
|
||||
/* Pass 2: process 2 rows from work array, store into output array. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < 2; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* It's not clear whether a zero row test is worthwhile here ... */
|
||||
|
||||
#ifndef NO_ZERO_ROW_TEST
|
||||
if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
|
||||
/* AC terms all zero */
|
||||
_JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
|
||||
PASS1_BITS + 3) & RANGE_MASK];
|
||||
|
||||
outptr[0] = dcval;
|
||||
outptr[1] = dcval;
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 2);
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp0 = MULTIPLY((JLONG)wsptr[7], -FIX_0_720959822) + /* sqrt(2) * ( c7-c5+c3-c1) */
|
||||
MULTIPLY((JLONG)wsptr[5], FIX_0_850430095) + /* sqrt(2) * (-c1+c3+c5+c7) */
|
||||
MULTIPLY((JLONG)wsptr[3], -FIX_1_272758580) + /* sqrt(2) * (-c1+c3-c5-c7) */
|
||||
MULTIPLY((JLONG)wsptr[1], FIX_3_624509785); /* sqrt(2) * ( c1+c3+c5+c7) */
|
||||
|
||||
/* Final output stage */
|
||||
|
||||
outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp0,
|
||||
CONST_BITS + PASS1_BITS + 3 + 2) &
|
||||
RANGE_MASK];
|
||||
outptr[1] = range_limit[(int)DESCALE(tmp10 - tmp0,
|
||||
CONST_BITS + PASS1_BITS + 3 + 2) &
|
||||
RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients,
|
||||
* producing a reduced-size 1x1 output block.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jpeg_idct_1x1(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, _JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col)
|
||||
{
|
||||
int dcval;
|
||||
ISLOW_MULT_TYPE *quantptr;
|
||||
_JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* We hardly need an inverse DCT routine for this: just take the
|
||||
* average pixel value, which is one-eighth of the DC coefficient.
|
||||
*/
|
||||
quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
|
||||
dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
|
||||
dcval = (int)DESCALE((JLONG)dcval, 3);
|
||||
|
||||
output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
|
||||
}
|
||||
|
||||
#endif /* IDCT_SCALING_SUPPORTED */
|
||||
147
thirdparty/libjpeg-turbo/src/jinclude.h
vendored
Normal file
147
thirdparty/libjpeg-turbo/src/jinclude.h
vendored
Normal file
@@ -0,0 +1,147 @@
|
||||
/*
|
||||
* jinclude.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2022-2023, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file exists to provide a single place to fix any problems with
|
||||
* including the wrong system include files. (Common problems are taken
|
||||
* care of by the standard jconfig symbols, but on really weird systems
|
||||
* you may have to edit this file.)
|
||||
*
|
||||
* NOTE: this file is NOT intended to be included by applications using the
|
||||
* JPEG library. Most applications need only include jpeglib.h.
|
||||
*/
|
||||
|
||||
#ifndef __JINCLUDE_H__
|
||||
#define __JINCLUDE_H__
|
||||
|
||||
/* Include auto-config file to find out which system include files we need. */
|
||||
|
||||
#include "jconfig.h" /* auto configuration options */
|
||||
#include "jconfigint.h"
|
||||
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
|
||||
|
||||
/*
|
||||
* Note that the core JPEG library does not require <stdio.h>;
|
||||
* only the default error handler and data source/destination modules do.
|
||||
* But we must pull it in because of the references to FILE in jpeglib.h.
|
||||
* You can remove those references if you want to compile without <stdio.h>.
|
||||
*/
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
/*
|
||||
* These macros/inline functions facilitate using Microsoft's "safe string"
|
||||
* functions with Visual Studio builds without the need to scatter #ifdefs
|
||||
* throughout the code base.
|
||||
*/
|
||||
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
||||
#define SNPRINTF(str, n, format, ...) \
|
||||
_snprintf_s(str, n, _TRUNCATE, format, ##__VA_ARGS__)
|
||||
|
||||
#else
|
||||
|
||||
#define SNPRINTF snprintf
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifndef NO_GETENV
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
||||
static INLINE int GETENV_S(char *buffer, size_t buffer_size, const char *name)
|
||||
{
|
||||
size_t required_size;
|
||||
|
||||
return (int)getenv_s(&required_size, buffer, buffer_size, name);
|
||||
}
|
||||
|
||||
#else /* _MSC_VER */
|
||||
|
||||
#include <errno.h>
|
||||
|
||||
/* This provides a similar interface to the Microsoft/C11 getenv_s() function,
|
||||
* but other than parameter validation, it has no advantages over getenv().
|
||||
*/
|
||||
|
||||
static INLINE int GETENV_S(char *buffer, size_t buffer_size, const char *name)
|
||||
{
|
||||
char *env;
|
||||
|
||||
if (!buffer) {
|
||||
if (buffer_size == 0)
|
||||
return 0;
|
||||
else
|
||||
return (errno = EINVAL);
|
||||
}
|
||||
if (buffer_size == 0)
|
||||
return (errno = EINVAL);
|
||||
if (!name) {
|
||||
*buffer = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
env = getenv(name);
|
||||
if (!env)
|
||||
{
|
||||
*buffer = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (strlen(env) + 1 > buffer_size) {
|
||||
*buffer = 0;
|
||||
return ERANGE;
|
||||
}
|
||||
|
||||
strncpy(buffer, env, buffer_size);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* _MSC_VER */
|
||||
|
||||
#endif /* NO_GETENV */
|
||||
|
||||
|
||||
#ifndef NO_PUTENV
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
#define PUTENV_S(name, value) _putenv_s(name, value)
|
||||
|
||||
#else
|
||||
|
||||
#include <errno.h>
|
||||
|
||||
/* This provides a similar interface to the Microsoft _putenv_s() function, but
|
||||
* other than parameter validation, it has no advantages over setenv().
|
||||
*/
|
||||
|
||||
static INLINE int PUTENV_S(const char *name, const char *value)
|
||||
{
|
||||
if (!name || !value)
|
||||
return (errno = EINVAL);
|
||||
|
||||
setenv(name, value, 1);
|
||||
|
||||
return errno;
|
||||
}
|
||||
|
||||
#endif /* _WIN32 */
|
||||
|
||||
#endif /* NO_PUTENV */
|
||||
|
||||
|
||||
#endif /* JINCLUDE_H */
|
||||
1290
thirdparty/libjpeg-turbo/src/jmemmgr.c
vendored
Normal file
1290
thirdparty/libjpeg-turbo/src/jmemmgr.c
vendored
Normal file
File diff suppressed because it is too large
Load Diff
110
thirdparty/libjpeg-turbo/src/jmemnobs.c
vendored
Normal file
110
thirdparty/libjpeg-turbo/src/jmemnobs.c
vendored
Normal file
@@ -0,0 +1,110 @@
|
||||
/*
|
||||
* jmemnobs.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1992-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2017-2018, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file provides a really simple implementation of the system-
|
||||
* dependent portion of the JPEG memory manager. This implementation
|
||||
* assumes that no backing-store files are needed: all required space
|
||||
* can be obtained from malloc().
|
||||
* This is very portable in the sense that it'll compile on almost anything,
|
||||
* but you'd better have lots of main memory (or virtual memory) if you want
|
||||
* to process big images.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the regular library
|
||||
* routines malloc() and free().
|
||||
*/
|
||||
|
||||
GLOBAL(void *)
|
||||
jpeg_get_small(j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void *)MALLOC(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_small(j_common_ptr cinfo, void *object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* "Large" objects are treated the same as "small" ones.
|
||||
*/
|
||||
|
||||
GLOBAL(void *)
|
||||
jpeg_get_large(j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void *)MALLOC(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_large(j_common_ptr cinfo, void *object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
*/
|
||||
|
||||
GLOBAL(size_t)
|
||||
jpeg_mem_available(j_common_ptr cinfo, size_t min_bytes_needed,
|
||||
size_t max_bytes_needed, size_t already_allocated)
|
||||
{
|
||||
if (cinfo->mem->max_memory_to_use) {
|
||||
if ((size_t)cinfo->mem->max_memory_to_use > already_allocated)
|
||||
return cinfo->mem->max_memory_to_use - already_allocated;
|
||||
else
|
||||
return 0;
|
||||
} else {
|
||||
/* Here we always say, "we got all you want bud!" */
|
||||
return max_bytes_needed;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* Since jpeg_mem_available always promised the moon,
|
||||
* this should never be called and we can just error out.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_open_backing_store(j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
ERREXIT(cinfo, JERR_NO_BACKING_STORE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. Here, there isn't any.
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_init(j_common_ptr cinfo)
|
||||
{
|
||||
return 0; /* just set max_memory_to_use to 0 */
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_term(j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
}
|
||||
147
thirdparty/libjpeg-turbo/src/jmemsys.h
vendored
Normal file
147
thirdparty/libjpeg-turbo/src/jmemsys.h
vendored
Normal file
@@ -0,0 +1,147 @@
|
||||
/*
|
||||
* jmemsys.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1992-1997, Thomas G. Lane.
|
||||
* It was modified by The libjpeg-turbo Project to include only code and
|
||||
* information relevant to libjpeg-turbo.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This include file defines the interface between the system-independent
|
||||
* and system-dependent portions of the JPEG memory manager. No other
|
||||
* modules need include it. (The system-independent portion is jmemmgr.c;
|
||||
* there are several different versions of the system-dependent portion.)
|
||||
*
|
||||
* This file works as-is for the system-dependent memory managers supplied
|
||||
* in the IJG distribution. You may need to modify it if you write a
|
||||
* custom memory manager. If system-dependent changes are needed in
|
||||
* this file, the best method is to #ifdef them based on a configuration
|
||||
* symbol supplied in jconfig.h.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release small chunks of
|
||||
* memory. (Typically the total amount requested through jpeg_get_small is
|
||||
* no more than 20K or so; this will be requested in chunks of a few K each.)
|
||||
* Behavior should be the same as for the standard library functions malloc
|
||||
* and free; in particular, jpeg_get_small must return NULL on failure.
|
||||
* On most systems, these ARE malloc and free. jpeg_free_small is passed the
|
||||
* size of the object being freed, just in case it's needed.
|
||||
*/
|
||||
|
||||
EXTERN(void *) jpeg_get_small(j_common_ptr cinfo, size_t sizeofobject);
|
||||
EXTERN(void) jpeg_free_small(j_common_ptr cinfo, void *object,
|
||||
size_t sizeofobject);
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release large chunks of
|
||||
* memory (up to the total free space designated by jpeg_mem_available).
|
||||
* These are identical to the jpeg_get/free_small routines; but we keep them
|
||||
* separate anyway, in case a different allocation strategy is desirable for
|
||||
* large chunks.
|
||||
*/
|
||||
|
||||
EXTERN(void *) jpeg_get_large(j_common_ptr cinfo, size_t sizeofobject);
|
||||
EXTERN(void) jpeg_free_large(j_common_ptr cinfo, void *object,
|
||||
size_t sizeofobject);
|
||||
|
||||
/*
|
||||
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
|
||||
* be requested in a single call to jpeg_get_large (and jpeg_get_small for that
|
||||
* matter, but that case should never come into play). This macro was needed
|
||||
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
|
||||
* On machines with flat address spaces, any large constant may be used.
|
||||
*
|
||||
* NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
|
||||
* size_t and will be a multiple of sizeof(align_type).
|
||||
*/
|
||||
|
||||
#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
|
||||
#define MAX_ALLOC_CHUNK 1000000000L
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This routine computes the total space still available for allocation by
|
||||
* jpeg_get_large. If more space than this is needed, backing store will be
|
||||
* used. NOTE: any memory already allocated must not be counted.
|
||||
*
|
||||
* There is a minimum space requirement, corresponding to the minimum
|
||||
* feasible buffer sizes; jmemmgr.c will request that much space even if
|
||||
* jpeg_mem_available returns zero. The maximum space needed, enough to hold
|
||||
* all working storage in memory, is also passed in case it is useful.
|
||||
* Finally, the total space already allocated is passed. If no better
|
||||
* method is available, cinfo->mem->max_memory_to_use - already_allocated
|
||||
* is often a suitable calculation.
|
||||
*
|
||||
* It is OK for jpeg_mem_available to underestimate the space available
|
||||
* (that'll just lead to more backing-store access than is really necessary).
|
||||
* However, an overestimate will lead to failure. Hence it's wise to subtract
|
||||
* a slop factor from the true available space. 5% should be enough.
|
||||
*
|
||||
* On machines with lots of virtual memory, any large constant may be returned.
|
||||
* Conversely, zero may be returned to always use the minimum amount of memory.
|
||||
*/
|
||||
|
||||
EXTERN(size_t) jpeg_mem_available(j_common_ptr cinfo, size_t min_bytes_needed,
|
||||
size_t max_bytes_needed,
|
||||
size_t already_allocated);
|
||||
|
||||
|
||||
/*
|
||||
* This structure holds whatever state is needed to access a single
|
||||
* backing-store object. The read/write/close method pointers are called
|
||||
* by jmemmgr.c to manipulate the backing-store object; all other fields
|
||||
* are private to the system-dependent backing store routines.
|
||||
*/
|
||||
|
||||
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
|
||||
|
||||
|
||||
typedef struct backing_store_struct *backing_store_ptr;
|
||||
|
||||
typedef struct backing_store_struct {
|
||||
/* Methods for reading/writing/closing this backing-store object */
|
||||
void (*read_backing_store) (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void *buffer_address, long file_offset,
|
||||
long byte_count);
|
||||
void (*write_backing_store) (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void *buffer_address, long file_offset,
|
||||
long byte_count);
|
||||
void (*close_backing_store) (j_common_ptr cinfo, backing_store_ptr info);
|
||||
|
||||
/* Private fields for system-dependent backing-store management */
|
||||
/* For a typical implementation with temp files, we need: */
|
||||
FILE *temp_file; /* stdio reference to temp file */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
|
||||
} backing_store_info;
|
||||
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object. This must fill in the
|
||||
* read/write/close pointers in the object. The read/write routines
|
||||
* may take an error exit if the specified maximum file size is exceeded.
|
||||
* (If jpeg_mem_available always returns a large value, this routine can
|
||||
* just take an error exit.)
|
||||
*/
|
||||
|
||||
EXTERN(void) jpeg_open_backing_store(j_common_ptr cinfo,
|
||||
backing_store_ptr info,
|
||||
long total_bytes_needed);
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. jpeg_mem_init will be called before anything is
|
||||
* allocated (and, therefore, nothing in cinfo is of use except the error
|
||||
* manager pointer). It should return a suitable default value for
|
||||
* max_memory_to_use; this may subsequently be overridden by the surrounding
|
||||
* application. (Note that max_memory_to_use is only important if
|
||||
* jpeg_mem_available chooses to consult it ... no one else will.)
|
||||
* jpeg_mem_term may assume that all requested memory has been freed and that
|
||||
* all opened backing-store objects have been closed.
|
||||
*/
|
||||
|
||||
EXTERN(long) jpeg_mem_init(j_common_ptr cinfo);
|
||||
EXTERN(void) jpeg_mem_term(j_common_ptr cinfo);
|
||||
387
thirdparty/libjpeg-turbo/src/jmorecfg.h
vendored
Normal file
387
thirdparty/libjpeg-turbo/src/jmorecfg.h
vendored
Normal file
@@ -0,0 +1,387 @@
|
||||
// Modified to remove lossless jpeg support.
|
||||
|
||||
/*
|
||||
* jmorecfg.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 1997-2009 by Guido Vollbeding.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2009, 2011, 2014-2015, 2018, 2020, 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains additional configuration options that customize the
|
||||
* JPEG software for special applications or support machine-dependent
|
||||
* optimizations. Most users will not need to touch this file.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Maximum number of components (color channels) allowed in JPEG image.
|
||||
* To meet the letter of Rec. ITU-T T.81 | ISO/IEC 10918-1, set this to 255.
|
||||
* However, darn few applications need more than 4 channels (maybe 5 for CMYK +
|
||||
* alpha mask). We recommend 10 as a reasonable compromise; use 4 if you are
|
||||
* really short on memory. (Each allowed component costs a hundred or so
|
||||
* bytes of storage, whether actually used in an image or not.)
|
||||
*/
|
||||
|
||||
#define MAX_COMPONENTS 10 /* maximum number of image components */
|
||||
|
||||
|
||||
/*
|
||||
* Basic data types.
|
||||
* You may need to change these if you have a machine with unusual data
|
||||
* type sizes; for example, "char" not 8 bits, "short" not 16 bits,
|
||||
* or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
|
||||
* but it had better be at least 16.
|
||||
*/
|
||||
|
||||
/* Representation of a single sample (pixel element value).
|
||||
* We frequently allocate large arrays of these, so it's important to keep
|
||||
* them small. But if you have memory to burn and access to char or short
|
||||
* arrays is very slow on your hardware, you might want to change these.
|
||||
*/
|
||||
|
||||
/* JSAMPLE should be the smallest type that will hold the values 0..255. */
|
||||
|
||||
typedef unsigned char JSAMPLE;
|
||||
#define GETJSAMPLE(value) ((int)(value))
|
||||
|
||||
#define MAXJSAMPLE 255
|
||||
#define CENTERJSAMPLE 128
|
||||
|
||||
|
||||
/* J12SAMPLE should be the smallest type that will hold the values 0..4095. */
|
||||
|
||||
typedef short J12SAMPLE;
|
||||
|
||||
#define MAXJ12SAMPLE 4095
|
||||
#define CENTERJ12SAMPLE 2048
|
||||
|
||||
|
||||
/* J16SAMPLE should be the smallest type that will hold the values 0..65535. */
|
||||
|
||||
typedef unsigned short J16SAMPLE;
|
||||
|
||||
#define MAXJ16SAMPLE 65535
|
||||
#define CENTERJ16SAMPLE 32768
|
||||
|
||||
|
||||
/* Representation of a DCT frequency coefficient.
|
||||
* This should be a signed value of at least 16 bits; "short" is usually OK.
|
||||
* Again, we allocate large arrays of these, but you can change to int
|
||||
* if you have memory to burn and "short" is really slow.
|
||||
*/
|
||||
|
||||
typedef short JCOEF;
|
||||
|
||||
|
||||
/* Compressed datastreams are represented as arrays of JOCTET.
|
||||
* These must be EXACTLY 8 bits wide, at least once they are written to
|
||||
* external storage. Note that when using the stdio data source/destination
|
||||
* managers, this is also the data type passed to fread/fwrite.
|
||||
*/
|
||||
|
||||
typedef unsigned char JOCTET;
|
||||
#define GETJOCTET(value) (value)
|
||||
|
||||
|
||||
/* These typedefs are used for various table entries and so forth.
|
||||
* They must be at least as wide as specified; but making them too big
|
||||
* won't cost a huge amount of memory, so we don't provide special
|
||||
* extraction code like we did for JSAMPLE. (In other words, these
|
||||
* typedefs live at a different point on the speed/space tradeoff curve.)
|
||||
*/
|
||||
|
||||
/* UINT8 must hold at least the values 0..255. */
|
||||
|
||||
typedef unsigned char UINT8;
|
||||
|
||||
/* UINT16 must hold at least the values 0..65535. */
|
||||
|
||||
typedef unsigned short UINT16;
|
||||
|
||||
/* INT16 must hold at least the values -32768..32767. */
|
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
|
||||
typedef short INT16;
|
||||
#endif
|
||||
|
||||
/* INT32 must hold at least signed 32-bit values.
|
||||
*
|
||||
* NOTE: The INT32 typedef dates back to libjpeg v5 (1994.) Integers were
|
||||
* sometimes 16-bit back then (MS-DOS), which is why INT32 is typedef'd to
|
||||
* long. It also wasn't common (or at least as common) in 1994 for INT32 to be
|
||||
* defined by platform headers. Since then, however, INT32 is defined in
|
||||
* several other common places:
|
||||
*
|
||||
* Xmd.h (X11 header) typedefs INT32 to int on 64-bit platforms and long on
|
||||
* 32-bit platforms (i.e always a 32-bit signed type.)
|
||||
*
|
||||
* basetsd.h (Win32 header) typedefs INT32 to int (always a 32-bit signed type
|
||||
* on modern platforms.)
|
||||
*
|
||||
* qglobal.h (Qt header) typedefs INT32 to int (always a 32-bit signed type on
|
||||
* modern platforms.)
|
||||
*
|
||||
* This is a recipe for conflict, since "long" and "int" aren't always
|
||||
* compatible types. Since the definition of INT32 has technically been part
|
||||
* of the libjpeg API for more than 20 years, we can't remove it, but we do not
|
||||
* use it internally any longer. We instead define a separate type (JLONG)
|
||||
* for internal use, which ensures that internal behavior will always be the
|
||||
* same regardless of any external headers that may be included.
|
||||
*/
|
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
|
||||
#ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */
|
||||
#ifndef _BASETSD_H /* MinGW is slightly different */
|
||||
#ifndef QGLOBAL_H /* Qt defines it in qglobal.h */
|
||||
typedef long INT32;
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Datatype used for image dimensions. The JPEG standard only supports
|
||||
* images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
|
||||
* "unsigned int" is sufficient on all machines. However, if you need to
|
||||
* handle larger images and you don't mind deviating from the spec, you
|
||||
* can change this datatype. (Note that changing this datatype will
|
||||
* potentially require modifying the SIMD code. The x86-64 SIMD extensions,
|
||||
* in particular, assume a 32-bit JDIMENSION.)
|
||||
*/
|
||||
|
||||
typedef unsigned int JDIMENSION;
|
||||
|
||||
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
|
||||
|
||||
|
||||
/* These macros are used in all function definitions and extern declarations.
|
||||
* You could modify them if you need to change function linkage conventions;
|
||||
* in particular, you'll need to do that to make the library a Windows DLL.
|
||||
* Another application is to make all functions global for use with debuggers
|
||||
* or code profilers that require it.
|
||||
*/
|
||||
|
||||
/* a function called through method pointers: */
|
||||
#define METHODDEF(type) static type
|
||||
/* a function used only in its module: */
|
||||
#define LOCAL(type) static type
|
||||
/* a function referenced thru EXTERNs: */
|
||||
#define GLOBAL(type) type
|
||||
/* a reference to a GLOBAL function: */
|
||||
#define EXTERN(type) extern type
|
||||
|
||||
|
||||
/* Originally, this macro was used as a way of defining function prototypes
|
||||
* for both modern compilers as well as older compilers that did not support
|
||||
* prototype parameters. libjpeg-turbo has never supported these older,
|
||||
* non-ANSI compilers, but the macro is still included because there is some
|
||||
* software out there that uses it.
|
||||
*/
|
||||
|
||||
#define JMETHOD(type, methodname, arglist) type (*methodname) arglist
|
||||
|
||||
|
||||
/* libjpeg-turbo no longer supports platforms that have far symbols (MS-DOS),
|
||||
* but again, some software relies on this macro.
|
||||
*/
|
||||
|
||||
#undef FAR
|
||||
#define FAR
|
||||
|
||||
|
||||
/*
|
||||
* On a few systems, type boolean and/or its values FALSE, TRUE may appear
|
||||
* in standard header files. Or you may have conflicts with application-
|
||||
* specific header files that you want to include together with these files.
|
||||
* Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
|
||||
*/
|
||||
|
||||
#ifndef HAVE_BOOLEAN
|
||||
typedef int boolean;
|
||||
#endif
|
||||
#ifndef FALSE /* in case these macros already exist */
|
||||
#define FALSE 0 /* values of boolean */
|
||||
#endif
|
||||
#ifndef TRUE
|
||||
#define TRUE 1
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* The remaining options affect code selection within the JPEG library,
|
||||
* but they don't need to be visible to most applications using the library.
|
||||
* To minimize application namespace pollution, the symbols won't be
|
||||
* defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
|
||||
*/
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
#define JPEG_INTERNAL_OPTIONS
|
||||
#endif
|
||||
|
||||
#ifdef JPEG_INTERNAL_OPTIONS
|
||||
|
||||
|
||||
/*
|
||||
* These defines indicate whether to include various optional functions.
|
||||
* Undefining some of these symbols will produce a smaller but less capable
|
||||
* library. Note that you can leave certain source files out of the
|
||||
* compilation/linking process if you've #undef'd the corresponding symbols.
|
||||
* (You may HAVE to do that if your compiler doesn't like null source files.)
|
||||
*/
|
||||
|
||||
/* Capability options common to encoder and decoder: */
|
||||
|
||||
#define DCT_ISLOW_SUPPORTED /* accurate integer method */
|
||||
#define DCT_IFAST_SUPPORTED /* less accurate int method [legacy feature] */
|
||||
#define DCT_FLOAT_SUPPORTED /* floating-point method [legacy feature] */
|
||||
|
||||
/* Encoder capability options: */
|
||||
|
||||
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
|
||||
//#define C_LOSSLESS_SUPPORTED /* Lossless JPEG? */
|
||||
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
|
||||
/* Note: if you selected 12-bit data precision, it is dangerous to turn off
|
||||
* ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
|
||||
* precision, so jchuff.c normally uses entropy optimization to compute
|
||||
* usable tables for higher precision. If you don't want to do optimization,
|
||||
* you'll have to supply different default Huffman tables.
|
||||
* The exact same statements apply for progressive and lossless JPEG:
|
||||
* the default tables don't work for progressive mode or lossless mode.
|
||||
* (This may get fixed, however.)
|
||||
*/
|
||||
#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
|
||||
|
||||
/* Decoder capability options: */
|
||||
|
||||
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
|
||||
//#define D_LOSSLESS_SUPPORTED /* Lossless JPEG? */
|
||||
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
|
||||
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
|
||||
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
|
||||
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
|
||||
#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
|
||||
#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
|
||||
#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
|
||||
|
||||
/* more capability options later, no doubt */
|
||||
|
||||
|
||||
/*
|
||||
* The RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE macros are a vestigial
|
||||
* feature of libjpeg. The idea was that, if an application developer needed
|
||||
* to compress from/decompress to a BGR/BGRX/RGBX/XBGR/XRGB buffer, they could
|
||||
* change these macros, rebuild libjpeg, and link their application statically
|
||||
* with it. In reality, few people ever did this, because there were some
|
||||
* severe restrictions involved (cjpeg and djpeg no longer worked properly,
|
||||
* compressing/decompressing RGB JPEGs no longer worked properly, and the color
|
||||
* quantizer wouldn't work with pixel sizes other than 3.) Furthermore, since
|
||||
* all of the O/S-supplied versions of libjpeg were built with the default
|
||||
* values of RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE, many applications
|
||||
* have come to regard these values as immutable.
|
||||
*
|
||||
* The libjpeg-turbo colorspace extensions provide a much cleaner way of
|
||||
* compressing from/decompressing to buffers with arbitrary component orders
|
||||
* and pixel sizes. Thus, we do not support changing the values of RGB_RED,
|
||||
* RGB_GREEN, RGB_BLUE, or RGB_PIXELSIZE. In addition to the restrictions
|
||||
* listed above, changing these values will also break the SIMD extensions and
|
||||
* the regression tests.
|
||||
*/
|
||||
|
||||
#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
|
||||
#define RGB_GREEN 1 /* Offset of Green */
|
||||
#define RGB_BLUE 2 /* Offset of Blue */
|
||||
#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
|
||||
|
||||
#define JPEG_NUMCS 17
|
||||
|
||||
#define EXT_RGB_RED 0
|
||||
#define EXT_RGB_GREEN 1
|
||||
#define EXT_RGB_BLUE 2
|
||||
#define EXT_RGB_PIXELSIZE 3
|
||||
|
||||
#define EXT_RGBX_RED 0
|
||||
#define EXT_RGBX_GREEN 1
|
||||
#define EXT_RGBX_BLUE 2
|
||||
#define EXT_RGBX_PIXELSIZE 4
|
||||
|
||||
#define EXT_BGR_RED 2
|
||||
#define EXT_BGR_GREEN 1
|
||||
#define EXT_BGR_BLUE 0
|
||||
#define EXT_BGR_PIXELSIZE 3
|
||||
|
||||
#define EXT_BGRX_RED 2
|
||||
#define EXT_BGRX_GREEN 1
|
||||
#define EXT_BGRX_BLUE 0
|
||||
#define EXT_BGRX_PIXELSIZE 4
|
||||
|
||||
#define EXT_XBGR_RED 3
|
||||
#define EXT_XBGR_GREEN 2
|
||||
#define EXT_XBGR_BLUE 1
|
||||
#define EXT_XBGR_PIXELSIZE 4
|
||||
|
||||
#define EXT_XRGB_RED 1
|
||||
#define EXT_XRGB_GREEN 2
|
||||
#define EXT_XRGB_BLUE 3
|
||||
#define EXT_XRGB_PIXELSIZE 4
|
||||
|
||||
static const int rgb_red[JPEG_NUMCS] = {
|
||||
-1, -1, RGB_RED, -1, -1, -1, EXT_RGB_RED, EXT_RGBX_RED,
|
||||
EXT_BGR_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED,
|
||||
EXT_RGBX_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED,
|
||||
-1
|
||||
};
|
||||
|
||||
static const int rgb_green[JPEG_NUMCS] = {
|
||||
-1, -1, RGB_GREEN, -1, -1, -1, EXT_RGB_GREEN, EXT_RGBX_GREEN,
|
||||
EXT_BGR_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN,
|
||||
EXT_RGBX_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN,
|
||||
-1
|
||||
};
|
||||
|
||||
static const int rgb_blue[JPEG_NUMCS] = {
|
||||
-1, -1, RGB_BLUE, -1, -1, -1, EXT_RGB_BLUE, EXT_RGBX_BLUE,
|
||||
EXT_BGR_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE,
|
||||
EXT_RGBX_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE,
|
||||
-1
|
||||
};
|
||||
|
||||
static const int rgb_pixelsize[JPEG_NUMCS] = {
|
||||
-1, -1, RGB_PIXELSIZE, -1, -1, -1, EXT_RGB_PIXELSIZE, EXT_RGBX_PIXELSIZE,
|
||||
EXT_BGR_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE,
|
||||
EXT_RGBX_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE,
|
||||
-1
|
||||
};
|
||||
|
||||
/* Definitions for speed-related optimizations. */
|
||||
|
||||
/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
|
||||
* two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
|
||||
* as short on such a machine. MULTIPLIER must be at least 16 bits wide.
|
||||
*/
|
||||
|
||||
#ifndef MULTIPLIER
|
||||
#ifndef WITH_SIMD
|
||||
#define MULTIPLIER int /* type for fastest integer multiply */
|
||||
#else
|
||||
#define MULTIPLIER short /* prefer 16-bit with SIMD for parellelism */
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* FAST_FLOAT should be either float or double, whichever is done faster
|
||||
* by your compiler. (Note that this type is only used in the floating point
|
||||
* DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
|
||||
*/
|
||||
|
||||
#ifndef FAST_FLOAT
|
||||
#define FAST_FLOAT float
|
||||
#endif
|
||||
|
||||
#endif /* JPEG_INTERNAL_OPTIONS */
|
||||
4134
thirdparty/libjpeg-turbo/src/jpeg_nbits.c
vendored
Normal file
4134
thirdparty/libjpeg-turbo/src/jpeg_nbits.c
vendored
Normal file
File diff suppressed because it is too large
Load Diff
43
thirdparty/libjpeg-turbo/src/jpeg_nbits.h
vendored
Normal file
43
thirdparty/libjpeg-turbo/src/jpeg_nbits.h
vendored
Normal file
@@ -0,0 +1,43 @@
|
||||
/*
|
||||
* Copyright (C) 2014, 2021, 2024, D. R. Commander.
|
||||
* Copyright (C) 2014, Olle Liljenzin.
|
||||
* Copyright (C) 2020, Arm Limited.
|
||||
*
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*/
|
||||
|
||||
/*
|
||||
* NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
|
||||
* used for bit counting rather than the lookup table. This will reduce the
|
||||
* memory footprint by 64k, which is important for some mobile applications
|
||||
* that create many isolated instances of libjpeg-turbo (web browsers, for
|
||||
* instance.) This may improve performance on some mobile platforms as well.
|
||||
* This feature is enabled by default only on Arm processors, because some x86
|
||||
* chips have a slow implementation of bsr, and the use of clz/bsr cannot be
|
||||
* shown to have a significant performance impact even on the x86 chips that
|
||||
* have a fast implementation of it. When building for Armv6, you can
|
||||
* explicitly disable the use of clz/bsr by adding -mthumb to the compiler
|
||||
* flags (this defines __thumb__).
|
||||
*/
|
||||
|
||||
/* NOTE: Both GCC and Clang define __GNUC__ */
|
||||
#if (defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__))) || \
|
||||
defined(_M_ARM) || defined(_M_ARM64)
|
||||
#if !defined(__thumb__) || defined(__thumb2__)
|
||||
#define USE_CLZ_INTRINSIC
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef USE_CLZ_INTRINSIC
|
||||
#if defined(_MSC_VER) && !defined(__clang__)
|
||||
#define JPEG_NBITS_NONZERO(x) (32 - _CountLeadingZeros(x))
|
||||
#else
|
||||
#define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
|
||||
#endif
|
||||
#define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
|
||||
#else
|
||||
extern const unsigned char jpeg_nbits_table[65536];
|
||||
#define JPEG_NBITS(x) (jpeg_nbits_table[x])
|
||||
#define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x)
|
||||
#endif
|
||||
32
thirdparty/libjpeg-turbo/src/jpegapicomp.h
vendored
Normal file
32
thirdparty/libjpeg-turbo/src/jpegapicomp.h
vendored
Normal file
@@ -0,0 +1,32 @@
|
||||
/*
|
||||
* jpegapicomp.h
|
||||
*
|
||||
* Copyright (C) 2010, 2020, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* JPEG compatibility macros
|
||||
* These declarations are considered internal to the JPEG library; most
|
||||
* applications using the library shouldn't need to include this file.
|
||||
*/
|
||||
|
||||
#if JPEG_LIB_VERSION >= 70
|
||||
#define _DCT_scaled_size DCT_h_scaled_size
|
||||
#define _DCT_h_scaled_size DCT_h_scaled_size
|
||||
#define _DCT_v_scaled_size DCT_v_scaled_size
|
||||
#define _min_DCT_scaled_size min_DCT_h_scaled_size
|
||||
#define _min_DCT_h_scaled_size min_DCT_h_scaled_size
|
||||
#define _min_DCT_v_scaled_size min_DCT_v_scaled_size
|
||||
#define _jpeg_width jpeg_width
|
||||
#define _jpeg_height jpeg_height
|
||||
#define JERR_ARITH_NOTIMPL JERR_NOT_COMPILED
|
||||
#else
|
||||
#define _DCT_scaled_size DCT_scaled_size
|
||||
#define _DCT_h_scaled_size DCT_scaled_size
|
||||
#define _DCT_v_scaled_size DCT_scaled_size
|
||||
#define _min_DCT_scaled_size min_DCT_scaled_size
|
||||
#define _min_DCT_h_scaled_size min_DCT_scaled_size
|
||||
#define _min_DCT_v_scaled_size min_DCT_scaled_size
|
||||
#define _jpeg_width image_width
|
||||
#define _jpeg_height image_height
|
||||
#endif
|
||||
600
thirdparty/libjpeg-turbo/src/jpegint.h
vendored
Normal file
600
thirdparty/libjpeg-turbo/src/jpegint.h
vendored
Normal file
@@ -0,0 +1,600 @@
|
||||
/*
|
||||
* jpegint.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 1997-2009 by Guido Vollbeding.
|
||||
* Lossless JPEG Modifications:
|
||||
* Copyright (C) 1999, Ken Murchison.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2015-2017, 2019, 2021-2022, 2024, D. R. Commander.
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
* Copyright (C) 2021, Alex Richardson.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file provides common declarations for the various JPEG modules.
|
||||
* These declarations are considered internal to the JPEG library; most
|
||||
* applications using the library shouldn't need to include this file.
|
||||
*/
|
||||
|
||||
|
||||
/* Representation of a spatial difference value.
|
||||
* This should be a signed value of at least 16 bits; int is usually OK.
|
||||
*/
|
||||
|
||||
typedef int JDIFF;
|
||||
|
||||
typedef JDIFF FAR *JDIFFROW; /* pointer to one row of difference values */
|
||||
typedef JDIFFROW *JDIFFARRAY; /* ptr to some rows (a 2-D diff array) */
|
||||
typedef JDIFFARRAY *JDIFFIMAGE; /* a 3-D diff array: top index is color */
|
||||
|
||||
|
||||
/* Declarations for both compression & decompression */
|
||||
|
||||
typedef enum { /* Operating modes for buffer controllers */
|
||||
JBUF_PASS_THRU, /* Plain stripwise operation */
|
||||
/* Remaining modes require a full-image buffer to have been created */
|
||||
JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
|
||||
JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
|
||||
JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
|
||||
} J_BUF_MODE;
|
||||
|
||||
/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
|
||||
#define CSTATE_START 100 /* after create_compress */
|
||||
#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
|
||||
#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
|
||||
#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */
|
||||
#define DSTATE_START 200 /* after create_decompress */
|
||||
#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */
|
||||
#define DSTATE_READY 202 /* found SOS, ready for start_decompress */
|
||||
#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/
|
||||
#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */
|
||||
#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */
|
||||
#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */
|
||||
#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */
|
||||
#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */
|
||||
#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */
|
||||
#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */
|
||||
|
||||
|
||||
/* JLONG must hold at least signed 32-bit values. */
|
||||
typedef long JLONG;
|
||||
|
||||
/* JUINTPTR must hold pointer values. */
|
||||
#ifdef __UINTPTR_TYPE__
|
||||
/*
|
||||
* __UINTPTR_TYPE__ is GNU-specific and available in GCC 4.6+ and Clang 3.0+.
|
||||
* Fortunately, that is sufficient to support the few architectures for which
|
||||
* sizeof(void *) != sizeof(size_t). The only other options would require C99
|
||||
* or Clang-specific builtins.
|
||||
*/
|
||||
typedef __UINTPTR_TYPE__ JUINTPTR;
|
||||
#else
|
||||
typedef size_t JUINTPTR;
|
||||
#endif
|
||||
|
||||
#define IsExtRGB(cs) \
|
||||
(cs == JCS_RGB || (cs >= JCS_EXT_RGB && cs <= JCS_EXT_ARGB))
|
||||
|
||||
/*
|
||||
* Left shift macro that handles a negative operand without causing any
|
||||
* sanitizer warnings
|
||||
*/
|
||||
|
||||
#define LEFT_SHIFT(a, b) ((JLONG)((unsigned long)(a) << (b)))
|
||||
|
||||
|
||||
/* Declarations for compression modules */
|
||||
|
||||
/* Master control module */
|
||||
struct jpeg_comp_master {
|
||||
void (*prepare_for_pass) (j_compress_ptr cinfo);
|
||||
void (*pass_startup) (j_compress_ptr cinfo);
|
||||
void (*finish_pass) (j_compress_ptr cinfo);
|
||||
|
||||
/* State variables made visible to other modules */
|
||||
boolean call_pass_startup; /* True if pass_startup must be called */
|
||||
boolean is_last_pass; /* True during last pass */
|
||||
boolean lossless; /* True if lossless mode is enabled */
|
||||
};
|
||||
|
||||
/* Main buffer control (downsampled-data buffer) */
|
||||
struct jpeg_c_main_controller {
|
||||
void (*start_pass) (j_compress_ptr cinfo, J_BUF_MODE pass_mode);
|
||||
void (*process_data) (j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail);
|
||||
void (*process_data_12) (j_compress_ptr cinfo, J12SAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail);
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
void (*process_data_16) (j_compress_ptr cinfo, J16SAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail);
|
||||
#endif
|
||||
};
|
||||
|
||||
/* Compression preprocessing (downsampling input buffer control) */
|
||||
struct jpeg_c_prep_controller {
|
||||
void (*start_pass) (j_compress_ptr cinfo, J_BUF_MODE pass_mode);
|
||||
void (*pre_process_data) (j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail,
|
||||
JSAMPIMAGE output_buf,
|
||||
JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail);
|
||||
void (*pre_process_data_12) (j_compress_ptr cinfo, J12SAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail,
|
||||
J12SAMPIMAGE output_buf,
|
||||
JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail);
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
void (*pre_process_data_16) (j_compress_ptr cinfo, J16SAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail,
|
||||
J16SAMPIMAGE output_buf,
|
||||
JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail);
|
||||
#endif
|
||||
};
|
||||
|
||||
/* Lossy mode: Coefficient buffer control
|
||||
* Lossless mode: Difference buffer control
|
||||
*/
|
||||
struct jpeg_c_coef_controller {
|
||||
void (*start_pass) (j_compress_ptr cinfo, J_BUF_MODE pass_mode);
|
||||
boolean (*compress_data) (j_compress_ptr cinfo, JSAMPIMAGE input_buf);
|
||||
boolean (*compress_data_12) (j_compress_ptr cinfo, J12SAMPIMAGE input_buf);
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
boolean (*compress_data_16) (j_compress_ptr cinfo, J16SAMPIMAGE input_buf);
|
||||
#endif
|
||||
};
|
||||
|
||||
/* Colorspace conversion */
|
||||
struct jpeg_color_converter {
|
||||
void (*start_pass) (j_compress_ptr cinfo);
|
||||
void (*color_convert) (j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPIMAGE output_buf, JDIMENSION output_row,
|
||||
int num_rows);
|
||||
void (*color_convert_12) (j_compress_ptr cinfo, J12SAMPARRAY input_buf,
|
||||
J12SAMPIMAGE output_buf, JDIMENSION output_row,
|
||||
int num_rows);
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
void (*color_convert_16) (j_compress_ptr cinfo, J16SAMPARRAY input_buf,
|
||||
J16SAMPIMAGE output_buf, JDIMENSION output_row,
|
||||
int num_rows);
|
||||
#endif
|
||||
};
|
||||
|
||||
/* Downsampling */
|
||||
struct jpeg_downsampler {
|
||||
void (*start_pass) (j_compress_ptr cinfo);
|
||||
void (*downsample) (j_compress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_index, JSAMPIMAGE output_buf,
|
||||
JDIMENSION out_row_group_index);
|
||||
void (*downsample_12) (j_compress_ptr cinfo, J12SAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_index, J12SAMPIMAGE output_buf,
|
||||
JDIMENSION out_row_group_index);
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
void (*downsample_16) (j_compress_ptr cinfo, J16SAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_index, J16SAMPIMAGE output_buf,
|
||||
JDIMENSION out_row_group_index);
|
||||
#endif
|
||||
|
||||
boolean need_context_rows; /* TRUE if need rows above & below */
|
||||
};
|
||||
|
||||
/* Lossy mode: Forward DCT (also controls coefficient quantization)
|
||||
* Lossless mode: Prediction, sample differencing, and point transform
|
||||
*/
|
||||
struct jpeg_forward_dct {
|
||||
void (*start_pass) (j_compress_ptr cinfo);
|
||||
|
||||
/* Lossy mode */
|
||||
/* perhaps this should be an array??? */
|
||||
void (*forward_DCT) (j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks);
|
||||
void (*forward_DCT_12) (j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
J12SAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks);
|
||||
};
|
||||
|
||||
/* Entropy encoding */
|
||||
struct jpeg_entropy_encoder {
|
||||
void (*start_pass) (j_compress_ptr cinfo, boolean gather_statistics);
|
||||
|
||||
/* Lossy mode */
|
||||
boolean (*encode_mcu) (j_compress_ptr cinfo, JBLOCKROW *MCU_data);
|
||||
/* Lossless mode */
|
||||
JDIMENSION (*encode_mcus) (j_compress_ptr cinfo, JDIFFIMAGE diff_buf,
|
||||
JDIMENSION MCU_row_num, JDIMENSION MCU_col_num,
|
||||
JDIMENSION nMCU);
|
||||
|
||||
void (*finish_pass) (j_compress_ptr cinfo);
|
||||
};
|
||||
|
||||
/* Marker writing */
|
||||
struct jpeg_marker_writer {
|
||||
void (*write_file_header) (j_compress_ptr cinfo);
|
||||
void (*write_frame_header) (j_compress_ptr cinfo);
|
||||
void (*write_scan_header) (j_compress_ptr cinfo);
|
||||
void (*write_file_trailer) (j_compress_ptr cinfo);
|
||||
void (*write_tables_only) (j_compress_ptr cinfo);
|
||||
/* These routines are exported to allow insertion of extra markers */
|
||||
/* Probably only COM and APPn markers should be written this way */
|
||||
void (*write_marker_header) (j_compress_ptr cinfo, int marker,
|
||||
unsigned int datalen);
|
||||
void (*write_marker_byte) (j_compress_ptr cinfo, int val);
|
||||
};
|
||||
|
||||
|
||||
/* Declarations for decompression modules */
|
||||
|
||||
/* Master control module */
|
||||
struct jpeg_decomp_master {
|
||||
void (*prepare_for_output_pass) (j_decompress_ptr cinfo);
|
||||
void (*finish_output_pass) (j_decompress_ptr cinfo);
|
||||
|
||||
/* State variables made visible to other modules */
|
||||
boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */
|
||||
boolean lossless; /* True if decompressing a lossless image */
|
||||
|
||||
/* Partial decompression variables */
|
||||
JDIMENSION first_iMCU_col;
|
||||
JDIMENSION last_iMCU_col;
|
||||
JDIMENSION first_MCU_col[MAX_COMPONENTS];
|
||||
JDIMENSION last_MCU_col[MAX_COMPONENTS];
|
||||
boolean jinit_upsampler_no_alloc;
|
||||
|
||||
/* Last iMCU row that was successfully decoded */
|
||||
JDIMENSION last_good_iMCU_row;
|
||||
|
||||
/* Tail of list of saved markers */
|
||||
jpeg_saved_marker_ptr marker_list_end;
|
||||
};
|
||||
|
||||
/* Input control module */
|
||||
struct jpeg_input_controller {
|
||||
int (*consume_input) (j_decompress_ptr cinfo);
|
||||
void (*reset_input_controller) (j_decompress_ptr cinfo);
|
||||
void (*start_input_pass) (j_decompress_ptr cinfo);
|
||||
void (*finish_input_pass) (j_decompress_ptr cinfo);
|
||||
|
||||
/* State variables made visible to other modules */
|
||||
boolean has_multiple_scans; /* True if file has multiple scans */
|
||||
boolean eoi_reached; /* True when EOI has been consumed */
|
||||
};
|
||||
|
||||
/* Main buffer control (downsampled-data buffer) */
|
||||
struct jpeg_d_main_controller {
|
||||
void (*start_pass) (j_decompress_ptr cinfo, J_BUF_MODE pass_mode);
|
||||
void (*process_data) (j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail);
|
||||
void (*process_data_12) (j_decompress_ptr cinfo, J12SAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail);
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
void (*process_data_16) (j_decompress_ptr cinfo, J16SAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail);
|
||||
#endif
|
||||
};
|
||||
|
||||
/* Lossy mode: Coefficient buffer control
|
||||
* Lossless mode: Difference buffer control
|
||||
*/
|
||||
struct jpeg_d_coef_controller {
|
||||
void (*start_input_pass) (j_decompress_ptr cinfo);
|
||||
int (*consume_data) (j_decompress_ptr cinfo);
|
||||
void (*start_output_pass) (j_decompress_ptr cinfo);
|
||||
int (*decompress_data) (j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
|
||||
int (*decompress_data_12) (j_decompress_ptr cinfo, J12SAMPIMAGE output_buf);
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
int (*decompress_data_16) (j_decompress_ptr cinfo, J16SAMPIMAGE output_buf);
|
||||
#endif
|
||||
|
||||
/* These variables keep track of the current location of the input side. */
|
||||
/* cinfo->input_iMCU_row is also used for this. */
|
||||
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
|
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||
|
||||
/* The output side's location is represented by cinfo->output_iMCU_row. */
|
||||
|
||||
/* Lossy mode */
|
||||
/* Pointer to array of coefficient virtual arrays, or NULL if none */
|
||||
jvirt_barray_ptr *coef_arrays;
|
||||
};
|
||||
|
||||
/* Decompression postprocessing (color quantization buffer control) */
|
||||
struct jpeg_d_post_controller {
|
||||
void (*start_pass) (j_decompress_ptr cinfo, J_BUF_MODE pass_mode);
|
||||
void (*post_process_data) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail);
|
||||
void (*post_process_data_12) (j_decompress_ptr cinfo, J12SAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
J12SAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail);
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
void (*post_process_data_16) (j_decompress_ptr cinfo, J16SAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
J16SAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail);
|
||||
#endif
|
||||
};
|
||||
|
||||
/* Marker reading & parsing */
|
||||
struct jpeg_marker_reader {
|
||||
void (*reset_marker_reader) (j_decompress_ptr cinfo);
|
||||
/* Read markers until SOS or EOI.
|
||||
* Returns same codes as are defined for jpeg_consume_input:
|
||||
* JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
|
||||
*/
|
||||
int (*read_markers) (j_decompress_ptr cinfo);
|
||||
/* Read a restart marker --- exported for use by entropy decoder only */
|
||||
jpeg_marker_parser_method read_restart_marker;
|
||||
|
||||
/* State of marker reader --- nominally internal, but applications
|
||||
* supplying COM or APPn handlers might like to know the state.
|
||||
*/
|
||||
boolean saw_SOI; /* found SOI? */
|
||||
boolean saw_SOF; /* found SOF? */
|
||||
int next_restart_num; /* next restart number expected (0-7) */
|
||||
unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
|
||||
};
|
||||
|
||||
/* Entropy decoding */
|
||||
struct jpeg_entropy_decoder {
|
||||
void (*start_pass) (j_decompress_ptr cinfo);
|
||||
|
||||
/* Lossy mode */
|
||||
boolean (*decode_mcu) (j_decompress_ptr cinfo, JBLOCKROW *MCU_data);
|
||||
/* Lossless mode */
|
||||
JDIMENSION (*decode_mcus) (j_decompress_ptr cinfo, JDIFFIMAGE diff_buf,
|
||||
JDIMENSION MCU_row_num, JDIMENSION MCU_col_num,
|
||||
JDIMENSION nMCU);
|
||||
boolean (*process_restart) (j_decompress_ptr cinfo);
|
||||
|
||||
/* This is here to share code between baseline and progressive decoders; */
|
||||
/* other modules probably should not use it */
|
||||
boolean insufficient_data; /* set TRUE after emitting warning */
|
||||
};
|
||||
|
||||
/* Lossy mode: Inverse DCT (also performs dequantization)
|
||||
* Lossless mode: Prediction, sample undifferencing, point transform, and
|
||||
* sample size scaling
|
||||
*/
|
||||
typedef void (*inverse_DCT_method_ptr) (j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
typedef void (*inverse_DCT_12_method_ptr) (j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block,
|
||||
J12SAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
|
||||
struct jpeg_inverse_dct {
|
||||
void (*start_pass) (j_decompress_ptr cinfo);
|
||||
|
||||
/* Lossy mode */
|
||||
/* It is useful to allow each component to have a separate IDCT method. */
|
||||
inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
|
||||
inverse_DCT_12_method_ptr inverse_DCT_12[MAX_COMPONENTS];
|
||||
};
|
||||
|
||||
/* Upsampling (note that upsampler must also call color converter) */
|
||||
struct jpeg_upsampler {
|
||||
void (*start_pass) (j_decompress_ptr cinfo);
|
||||
void (*upsample) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail);
|
||||
void (*upsample_12) (j_decompress_ptr cinfo, J12SAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail, J12SAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail);
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
void (*upsample_16) (j_decompress_ptr cinfo, J16SAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail, J16SAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail);
|
||||
#endif
|
||||
|
||||
boolean need_context_rows; /* TRUE if need rows above & below */
|
||||
};
|
||||
|
||||
/* Colorspace conversion */
|
||||
struct jpeg_color_deconverter {
|
||||
void (*start_pass) (j_decompress_ptr cinfo);
|
||||
void (*color_convert) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, JSAMPARRAY output_buf,
|
||||
int num_rows);
|
||||
void (*color_convert_12) (j_decompress_ptr cinfo, J12SAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, J12SAMPARRAY output_buf,
|
||||
int num_rows);
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
void (*color_convert_16) (j_decompress_ptr cinfo, J16SAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, J16SAMPARRAY output_buf,
|
||||
int num_rows);
|
||||
#endif
|
||||
};
|
||||
|
||||
/* Color quantization or color precision reduction */
|
||||
struct jpeg_color_quantizer {
|
||||
void (*start_pass) (j_decompress_ptr cinfo, boolean is_pre_scan);
|
||||
void (*color_quantize) (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows);
|
||||
void (*color_quantize_12) (j_decompress_ptr cinfo, J12SAMPARRAY input_buf,
|
||||
J12SAMPARRAY output_buf, int num_rows);
|
||||
void (*finish_pass) (j_decompress_ptr cinfo);
|
||||
void (*new_color_map) (j_decompress_ptr cinfo);
|
||||
};
|
||||
|
||||
|
||||
/* Miscellaneous useful macros */
|
||||
|
||||
#undef MAX
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#undef MIN
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
|
||||
#ifdef ZERO_BUFFERS
|
||||
#define MALLOC(size) calloc(1, size)
|
||||
#else
|
||||
#define MALLOC(size) malloc(size)
|
||||
#endif
|
||||
|
||||
|
||||
/* We assume that right shift corresponds to signed division by 2 with
|
||||
* rounding towards minus infinity. This is correct for typical "arithmetic
|
||||
* shift" instructions that shift in copies of the sign bit. But some
|
||||
* C compilers implement >> with an unsigned shift. For these machines you
|
||||
* must define RIGHT_SHIFT_IS_UNSIGNED.
|
||||
* RIGHT_SHIFT provides a proper signed right shift of a JLONG quantity.
|
||||
* It is only applied with constant shift counts. SHIFT_TEMPS must be
|
||||
* included in the variables of any routine using RIGHT_SHIFT.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define SHIFT_TEMPS JLONG shift_temp;
|
||||
#define RIGHT_SHIFT(x, shft) \
|
||||
((shift_temp = (x)) < 0 ? \
|
||||
(shift_temp >> (shft)) | ((~((JLONG)0)) << (32 - (shft))) : \
|
||||
(shift_temp >> (shft)))
|
||||
#else
|
||||
#define SHIFT_TEMPS
|
||||
#define RIGHT_SHIFT(x, shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
|
||||
/* Compression module initialization routines */
|
||||
EXTERN(void) jinit_compress_master(j_compress_ptr cinfo);
|
||||
EXTERN(void) jinit_c_master_control(j_compress_ptr cinfo,
|
||||
boolean transcode_only);
|
||||
EXTERN(void) jinit_c_main_controller(j_compress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j12init_c_main_controller(j_compress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) jinit_c_prep_controller(j_compress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j12init_c_prep_controller(j_compress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) jinit_c_coef_controller(j_compress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j12init_c_coef_controller(j_compress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) jinit_color_converter(j_compress_ptr cinfo);
|
||||
EXTERN(void) j12init_color_converter(j_compress_ptr cinfo);
|
||||
EXTERN(void) jinit_downsampler(j_compress_ptr cinfo);
|
||||
EXTERN(void) j12init_downsampler(j_compress_ptr cinfo);
|
||||
EXTERN(void) jinit_forward_dct(j_compress_ptr cinfo);
|
||||
EXTERN(void) j12init_forward_dct(j_compress_ptr cinfo);
|
||||
EXTERN(void) jinit_huff_encoder(j_compress_ptr cinfo);
|
||||
EXTERN(void) jinit_phuff_encoder(j_compress_ptr cinfo);
|
||||
EXTERN(void) jinit_arith_encoder(j_compress_ptr cinfo);
|
||||
EXTERN(void) jinit_marker_writer(j_compress_ptr cinfo);
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
EXTERN(void) j16init_c_main_controller(j_compress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j16init_c_prep_controller(j_compress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j16init_color_converter(j_compress_ptr cinfo);
|
||||
EXTERN(void) j16init_downsampler(j_compress_ptr cinfo);
|
||||
EXTERN(void) jinit_c_diff_controller(j_compress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j12init_c_diff_controller(j_compress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j16init_c_diff_controller(j_compress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) jinit_lhuff_encoder(j_compress_ptr cinfo);
|
||||
EXTERN(void) jinit_lossless_compressor(j_compress_ptr cinfo);
|
||||
EXTERN(void) j12init_lossless_compressor(j_compress_ptr cinfo);
|
||||
EXTERN(void) j16init_lossless_compressor(j_compress_ptr cinfo);
|
||||
#endif
|
||||
|
||||
/* Decompression module initialization routines */
|
||||
EXTERN(void) jinit_master_decompress(j_decompress_ptr cinfo);
|
||||
EXTERN(void) jinit_d_main_controller(j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j12init_d_main_controller(j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) jinit_d_coef_controller(j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j12init_d_coef_controller(j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) jinit_d_post_controller(j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j12init_d_post_controller(j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) jinit_input_controller(j_decompress_ptr cinfo);
|
||||
EXTERN(void) jinit_marker_reader(j_decompress_ptr cinfo);
|
||||
EXTERN(void) jinit_huff_decoder(j_decompress_ptr cinfo);
|
||||
EXTERN(void) jinit_phuff_decoder(j_decompress_ptr cinfo);
|
||||
EXTERN(void) jinit_arith_decoder(j_decompress_ptr cinfo);
|
||||
EXTERN(void) jinit_inverse_dct(j_decompress_ptr cinfo);
|
||||
EXTERN(void) j12init_inverse_dct(j_decompress_ptr cinfo);
|
||||
EXTERN(void) jinit_upsampler(j_decompress_ptr cinfo);
|
||||
EXTERN(void) j12init_upsampler(j_decompress_ptr cinfo);
|
||||
EXTERN(void) jinit_color_deconverter(j_decompress_ptr cinfo);
|
||||
EXTERN(void) j12init_color_deconverter(j_decompress_ptr cinfo);
|
||||
EXTERN(void) jinit_1pass_quantizer(j_decompress_ptr cinfo);
|
||||
EXTERN(void) j12init_1pass_quantizer(j_decompress_ptr cinfo);
|
||||
EXTERN(void) jinit_2pass_quantizer(j_decompress_ptr cinfo);
|
||||
EXTERN(void) j12init_2pass_quantizer(j_decompress_ptr cinfo);
|
||||
EXTERN(void) jinit_merged_upsampler(j_decompress_ptr cinfo);
|
||||
EXTERN(void) j12init_merged_upsampler(j_decompress_ptr cinfo);
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
EXTERN(void) j16init_d_main_controller(j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j16init_d_post_controller(j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j16init_upsampler(j_decompress_ptr cinfo);
|
||||
EXTERN(void) j16init_color_deconverter(j_decompress_ptr cinfo);
|
||||
EXTERN(void) jinit_d_diff_controller(j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j12init_d_diff_controller(j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) j16init_d_diff_controller(j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer);
|
||||
EXTERN(void) jinit_lhuff_decoder(j_decompress_ptr cinfo);
|
||||
EXTERN(void) jinit_lossless_decompressor(j_decompress_ptr cinfo);
|
||||
EXTERN(void) j12init_lossless_decompressor(j_decompress_ptr cinfo);
|
||||
EXTERN(void) j16init_lossless_decompressor(j_decompress_ptr cinfo);
|
||||
#endif
|
||||
|
||||
/* Memory manager initialization */
|
||||
EXTERN(void) jinit_memory_mgr(j_common_ptr cinfo);
|
||||
|
||||
/* Utility routines in jutils.c */
|
||||
EXTERN(long) jdiv_round_up(long a, long b);
|
||||
EXTERN(long) jround_up(long a, long b);
|
||||
EXTERN(void) jcopy_sample_rows(JSAMPARRAY input_array, int source_row,
|
||||
JSAMPARRAY output_array, int dest_row,
|
||||
int num_rows, JDIMENSION num_cols);
|
||||
EXTERN(void) j12copy_sample_rows(J12SAMPARRAY input_array, int source_row,
|
||||
J12SAMPARRAY output_array, int dest_row,
|
||||
int num_rows, JDIMENSION num_cols);
|
||||
#if defined(C_LOSSLESS_SUPPORTED) || defined(D_LOSSLESS_SUPPORTED)
|
||||
EXTERN(void) j16copy_sample_rows(J16SAMPARRAY input_array, int source_row,
|
||||
J16SAMPARRAY output_array, int dest_row,
|
||||
int num_rows, JDIMENSION num_cols);
|
||||
#endif
|
||||
EXTERN(void) jcopy_block_row(JBLOCKROW input_row, JBLOCKROW output_row,
|
||||
JDIMENSION num_blocks);
|
||||
EXTERN(void) jzero_far(void *target, size_t bytestozero);
|
||||
/* Constant tables in jutils.c */
|
||||
#if 0 /* This table is not actually needed in v6a */
|
||||
extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
|
||||
#endif
|
||||
extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
|
||||
|
||||
/* Arithmetic coding probability estimation tables in jaricom.c */
|
||||
extern const JLONG jpeg_aritab[];
|
||||
1223
thirdparty/libjpeg-turbo/src/jpeglib.h
vendored
Normal file
1223
thirdparty/libjpeg-turbo/src/jpeglib.h
vendored
Normal file
File diff suppressed because it is too large
Load Diff
864
thirdparty/libjpeg-turbo/src/jquant1.c
vendored
Normal file
864
thirdparty/libjpeg-turbo/src/jquant1.c
vendored
Normal file
@@ -0,0 +1,864 @@
|
||||
/*
|
||||
* jquant1.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2009, 2015, 2022-2023, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains 1-pass color quantization (color mapping) routines.
|
||||
* These routines provide mapping to a fixed color map using equally spaced
|
||||
* color values. Optional Floyd-Steinberg or ordered dithering is available.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
#if defined(QUANT_1PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16
|
||||
|
||||
|
||||
/*
|
||||
* The main purpose of 1-pass quantization is to provide a fast, if not very
|
||||
* high quality, colormapped output capability. A 2-pass quantizer usually
|
||||
* gives better visual quality; however, for quantized grayscale output this
|
||||
* quantizer is perfectly adequate. Dithering is highly recommended with this
|
||||
* quantizer, though you can turn it off if you really want to.
|
||||
*
|
||||
* In 1-pass quantization the colormap must be chosen in advance of seeing the
|
||||
* image. We use a map consisting of all combinations of Ncolors[i] color
|
||||
* values for the i'th component. The Ncolors[] values are chosen so that
|
||||
* their product, the total number of colors, is no more than that requested.
|
||||
* (In most cases, the product will be somewhat less.)
|
||||
*
|
||||
* Since the colormap is orthogonal, the representative value for each color
|
||||
* component can be determined without considering the other components;
|
||||
* then these indexes can be combined into a colormap index by a standard
|
||||
* N-dimensional-array-subscript calculation. Most of the arithmetic involved
|
||||
* can be precalculated and stored in the lookup table colorindex[].
|
||||
* colorindex[i][j] maps pixel value j in component i to the nearest
|
||||
* representative value (grid plane) for that component; this index is
|
||||
* multiplied by the array stride for component i, so that the
|
||||
* index of the colormap entry closest to a given pixel value is just
|
||||
* sum( colorindex[component-number][pixel-component-value] )
|
||||
* Aside from being fast, this scheme allows for variable spacing between
|
||||
* representative values with no additional lookup cost.
|
||||
*
|
||||
* If gamma correction has been applied in color conversion, it might be wise
|
||||
* to adjust the color grid spacing so that the representative colors are
|
||||
* equidistant in linear space. At this writing, gamma correction is not
|
||||
* implemented by jdcolor, so nothing is done here.
|
||||
*/
|
||||
|
||||
|
||||
/* Declarations for ordered dithering.
|
||||
*
|
||||
* We use a standard 16x16 ordered dither array. The basic concept of ordered
|
||||
* dithering is described in many references, for instance Dale Schumacher's
|
||||
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
|
||||
* In place of Schumacher's comparisons against a "threshold" value, we add a
|
||||
* "dither" value to the input pixel and then round the result to the nearest
|
||||
* output value. The dither value is equivalent to (0.5 - threshold) times
|
||||
* the distance between output values. For ordered dithering, we assume that
|
||||
* the output colors are equally spaced; if not, results will probably be
|
||||
* worse, since the dither may be too much or too little at a given point.
|
||||
*
|
||||
* The normal calculation would be to form pixel value + dither, range-limit
|
||||
* this to 0.._MAXJSAMPLE, and then index into the colorindex table as usual.
|
||||
* We can skip the separate range-limiting step by extending the colorindex
|
||||
* table in both directions.
|
||||
*/
|
||||
|
||||
#define ODITHER_SIZE 16 /* dimension of dither matrix */
|
||||
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
|
||||
#define ODITHER_CELLS (ODITHER_SIZE * ODITHER_SIZE) /* # cells in matrix */
|
||||
#define ODITHER_MASK (ODITHER_SIZE - 1) /* mask for wrapping around
|
||||
counters */
|
||||
|
||||
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
|
||||
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
|
||||
|
||||
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
|
||||
/* Bayer's order-4 dither array. Generated by the code given in
|
||||
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
|
||||
* The values in this array must range from 0 to ODITHER_CELLS-1.
|
||||
*/
|
||||
{ 0, 192, 48, 240, 12, 204, 60, 252, 3, 195, 51, 243, 15, 207, 63, 255 },
|
||||
{ 128, 64, 176, 112, 140, 76, 188, 124, 131, 67, 179, 115, 143, 79, 191, 127 },
|
||||
{ 32, 224, 16, 208, 44, 236, 28, 220, 35, 227, 19, 211, 47, 239, 31, 223 },
|
||||
{ 160, 96, 144, 80, 172, 108, 156, 92, 163, 99, 147, 83, 175, 111, 159, 95 },
|
||||
{ 8, 200, 56, 248, 4, 196, 52, 244, 11, 203, 59, 251, 7, 199, 55, 247 },
|
||||
{ 136, 72, 184, 120, 132, 68, 180, 116, 139, 75, 187, 123, 135, 71, 183, 119 },
|
||||
{ 40, 232, 24, 216, 36, 228, 20, 212, 43, 235, 27, 219, 39, 231, 23, 215 },
|
||||
{ 168, 104, 152, 88, 164, 100, 148, 84, 171, 107, 155, 91, 167, 103, 151, 87 },
|
||||
{ 2, 194, 50, 242, 14, 206, 62, 254, 1, 193, 49, 241, 13, 205, 61, 253 },
|
||||
{ 130, 66, 178, 114, 142, 78, 190, 126, 129, 65, 177, 113, 141, 77, 189, 125 },
|
||||
{ 34, 226, 18, 210, 46, 238, 30, 222, 33, 225, 17, 209, 45, 237, 29, 221 },
|
||||
{ 162, 98, 146, 82, 174, 110, 158, 94, 161, 97, 145, 81, 173, 109, 157, 93 },
|
||||
{ 10, 202, 58, 250, 6, 198, 54, 246, 9, 201, 57, 249, 5, 197, 53, 245 },
|
||||
{ 138, 74, 186, 122, 134, 70, 182, 118, 137, 73, 185, 121, 133, 69, 181, 117 },
|
||||
{ 42, 234, 26, 218, 38, 230, 22, 214, 41, 233, 25, 217, 37, 229, 21, 213 },
|
||||
{ 170, 106, 154, 90, 166, 102, 150, 86, 169, 105, 153, 89, 165, 101, 149, 85 }
|
||||
};
|
||||
|
||||
|
||||
/* Declarations for Floyd-Steinberg dithering.
|
||||
*
|
||||
* Errors are accumulated into the array fserrors[], at a resolution of
|
||||
* 1/16th of a pixel count. The error at a given pixel is propagated
|
||||
* to its not-yet-processed neighbors using the standard F-S fractions,
|
||||
* ... (here) 7/16
|
||||
* 3/16 5/16 1/16
|
||||
* We work left-to-right on even rows, right-to-left on odd rows.
|
||||
*
|
||||
* We can get away with a single array (holding one row's worth of errors)
|
||||
* by using it to store the current row's errors at pixel columns not yet
|
||||
* processed, but the next row's errors at columns already processed. We
|
||||
* need only a few extra variables to hold the errors immediately around the
|
||||
* current column. (If we are lucky, those variables are in registers, but
|
||||
* even if not, they're probably cheaper to access than array elements are.)
|
||||
*
|
||||
* The fserrors[] array is indexed [component#][position].
|
||||
* We provide (#columns + 2) entries per component; the extra entry at each
|
||||
* end saves us from special-casing the first and last pixels.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
typedef INT16 FSERROR; /* 16 bits should be enough */
|
||||
typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
||||
#else
|
||||
typedef JLONG FSERROR; /* may need more than 16 bits */
|
||||
typedef JLONG LOCFSERROR; /* be sure calculation temps are big enough */
|
||||
#endif
|
||||
|
||||
typedef FSERROR *FSERRPTR; /* pointer to error array */
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
#define MAX_Q_COMPS 4 /* max components I can handle */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_quantizer pub; /* public fields */
|
||||
|
||||
/* Initially allocated colormap is saved here */
|
||||
_JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
|
||||
int sv_actual; /* number of entries in use */
|
||||
|
||||
_JSAMPARRAY colorindex; /* Precomputed mapping for speed */
|
||||
/* colorindex[i][j] = index of color closest to pixel value j in component i,
|
||||
* premultiplied as described above. Since colormap indexes must fit into
|
||||
* _JSAMPLEs, the entries of this array will too.
|
||||
*/
|
||||
boolean is_padded; /* is the colorindex padded for odither? */
|
||||
|
||||
int Ncolors[MAX_Q_COMPS]; /* # of values allocated to each component */
|
||||
|
||||
/* Variables for ordered dithering */
|
||||
int row_index; /* cur row's vertical index in dither matrix */
|
||||
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
|
||||
|
||||
/* Variables for Floyd-Steinberg dithering */
|
||||
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
|
||||
boolean on_odd_row; /* flag to remember which row we are on */
|
||||
} my_cquantizer;
|
||||
|
||||
typedef my_cquantizer *my_cquantize_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Policy-making subroutines for create_colormap and create_colorindex.
|
||||
* These routines determine the colormap to be used. The rest of the module
|
||||
* only assumes that the colormap is orthogonal.
|
||||
*
|
||||
* * select_ncolors decides how to divvy up the available colors
|
||||
* among the components.
|
||||
* * output_value defines the set of representative values for a component.
|
||||
* * largest_input_value defines the mapping from input values to
|
||||
* representative values for a component.
|
||||
* Note that the latter two routines may impose different policies for
|
||||
* different components, though this is not currently done.
|
||||
*/
|
||||
|
||||
|
||||
LOCAL(int)
|
||||
select_ncolors(j_decompress_ptr cinfo, int Ncolors[])
|
||||
/* Determine allocation of desired colors to components, */
|
||||
/* and fill in Ncolors[] array to indicate choice. */
|
||||
/* Return value is total number of colors (product of Ncolors[] values). */
|
||||
{
|
||||
int nc = cinfo->out_color_components; /* number of color components */
|
||||
int max_colors = cinfo->desired_number_of_colors;
|
||||
int total_colors, iroot, i, j;
|
||||
boolean changed;
|
||||
long temp;
|
||||
int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
|
||||
RGB_order[0] = rgb_green[cinfo->out_color_space];
|
||||
RGB_order[1] = rgb_red[cinfo->out_color_space];
|
||||
RGB_order[2] = rgb_blue[cinfo->out_color_space];
|
||||
|
||||
/* We can allocate at least the nc'th root of max_colors per component. */
|
||||
/* Compute floor(nc'th root of max_colors). */
|
||||
iroot = 1;
|
||||
do {
|
||||
iroot++;
|
||||
temp = iroot; /* set temp = iroot ** nc */
|
||||
for (i = 1; i < nc; i++)
|
||||
temp *= iroot;
|
||||
} while (temp <= (long)max_colors); /* repeat till iroot exceeds root */
|
||||
iroot--; /* now iroot = floor(root) */
|
||||
|
||||
/* Must have at least 2 color values per component */
|
||||
if (iroot < 2)
|
||||
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int)temp);
|
||||
|
||||
/* Initialize to iroot color values for each component */
|
||||
total_colors = 1;
|
||||
for (i = 0; i < nc; i++) {
|
||||
Ncolors[i] = iroot;
|
||||
total_colors *= iroot;
|
||||
}
|
||||
/* We may be able to increment the count for one or more components without
|
||||
* exceeding max_colors, though we know not all can be incremented.
|
||||
* Sometimes, the first component can be incremented more than once!
|
||||
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
|
||||
* In RGB colorspace, try to increment G first, then R, then B.
|
||||
*/
|
||||
do {
|
||||
changed = FALSE;
|
||||
for (i = 0; i < nc; i++) {
|
||||
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
|
||||
/* calculate new total_colors if Ncolors[j] is incremented */
|
||||
temp = total_colors / Ncolors[j];
|
||||
temp *= Ncolors[j] + 1; /* done in long arith to avoid oflo */
|
||||
if (temp > (long)max_colors)
|
||||
break; /* won't fit, done with this pass */
|
||||
Ncolors[j]++; /* OK, apply the increment */
|
||||
total_colors = (int)temp;
|
||||
changed = TRUE;
|
||||
}
|
||||
} while (changed);
|
||||
|
||||
return total_colors;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(int)
|
||||
output_value(j_decompress_ptr cinfo, int ci, int j, int maxj)
|
||||
/* Return j'th output value, where j will range from 0 to maxj */
|
||||
/* The output values must fall in 0.._MAXJSAMPLE in increasing order */
|
||||
{
|
||||
/* We always provide values 0 and _MAXJSAMPLE for each component;
|
||||
* any additional values are equally spaced between these limits.
|
||||
* (Forcing the upper and lower values to the limits ensures that
|
||||
* dithering can't produce a color outside the selected gamut.)
|
||||
*/
|
||||
return (int)(((JLONG)j * _MAXJSAMPLE + maxj / 2) / maxj);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(int)
|
||||
largest_input_value(j_decompress_ptr cinfo, int ci, int j, int maxj)
|
||||
/* Return largest input value that should map to j'th output value */
|
||||
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= _MAXJSAMPLE */
|
||||
{
|
||||
/* Breakpoints are halfway between values returned by output_value */
|
||||
return (int)(((JLONG)(2 * j + 1) * _MAXJSAMPLE + maxj) / (2 * maxj));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the colormap.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
create_colormap(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
|
||||
_JSAMPARRAY colormap; /* Created colormap */
|
||||
int total_colors; /* Number of distinct output colors */
|
||||
int i, j, k, nci, blksize, blkdist, ptr, val;
|
||||
|
||||
/* Select number of colors for each component */
|
||||
total_colors = select_ncolors(cinfo, cquantize->Ncolors);
|
||||
|
||||
/* Report selected color counts */
|
||||
if (cinfo->out_color_components == 3)
|
||||
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, total_colors,
|
||||
cquantize->Ncolors[0], cquantize->Ncolors[1],
|
||||
cquantize->Ncolors[2]);
|
||||
else
|
||||
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
|
||||
|
||||
/* Allocate and fill in the colormap. */
|
||||
/* The colors are ordered in the map in standard row-major order, */
|
||||
/* i.e. rightmost (highest-indexed) color changes most rapidly. */
|
||||
|
||||
colormap = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION)total_colors, (JDIMENSION)cinfo->out_color_components);
|
||||
|
||||
/* blksize is number of adjacent repeated entries for a component */
|
||||
/* blkdist is distance between groups of identical entries for a component */
|
||||
blkdist = total_colors;
|
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
/* fill in colormap entries for i'th color component */
|
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||||
blksize = blkdist / nci;
|
||||
for (j = 0; j < nci; j++) {
|
||||
/* Compute j'th output value (out of nci) for component */
|
||||
val = output_value(cinfo, i, j, nci - 1);
|
||||
/* Fill in all colormap entries that have this value of this component */
|
||||
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
|
||||
/* fill in blksize entries beginning at ptr */
|
||||
for (k = 0; k < blksize; k++)
|
||||
colormap[i][ptr + k] = (_JSAMPLE)val;
|
||||
}
|
||||
}
|
||||
blkdist = blksize; /* blksize of this color is blkdist of next */
|
||||
}
|
||||
|
||||
/* Save the colormap in private storage,
|
||||
* where it will survive color quantization mode changes.
|
||||
*/
|
||||
cquantize->sv_colormap = colormap;
|
||||
cquantize->sv_actual = total_colors;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the color index table.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
create_colorindex(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
|
||||
_JSAMPROW indexptr;
|
||||
int i, j, k, nci, blksize, val, pad;
|
||||
|
||||
/* For ordered dither, we pad the color index tables by _MAXJSAMPLE in
|
||||
* each direction (input index values can be -_MAXJSAMPLE .. 2*_MAXJSAMPLE).
|
||||
* This is not necessary in the other dithering modes. However, we
|
||||
* flag whether it was done in case user changes dithering mode.
|
||||
*/
|
||||
if (cinfo->dither_mode == JDITHER_ORDERED) {
|
||||
pad = _MAXJSAMPLE * 2;
|
||||
cquantize->is_padded = TRUE;
|
||||
} else {
|
||||
pad = 0;
|
||||
cquantize->is_padded = FALSE;
|
||||
}
|
||||
|
||||
cquantize->colorindex = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION)(_MAXJSAMPLE + 1 + pad),
|
||||
(JDIMENSION)cinfo->out_color_components);
|
||||
|
||||
/* blksize is number of adjacent repeated entries for a component */
|
||||
blksize = cquantize->sv_actual;
|
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
/* fill in colorindex entries for i'th color component */
|
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||||
blksize = blksize / nci;
|
||||
|
||||
/* adjust colorindex pointers to provide padding at negative indexes. */
|
||||
if (pad)
|
||||
cquantize->colorindex[i] += _MAXJSAMPLE;
|
||||
|
||||
/* in loop, val = index of current output value, */
|
||||
/* and k = largest j that maps to current val */
|
||||
indexptr = cquantize->colorindex[i];
|
||||
val = 0;
|
||||
k = largest_input_value(cinfo, i, 0, nci - 1);
|
||||
for (j = 0; j <= _MAXJSAMPLE; j++) {
|
||||
while (j > k) /* advance val if past boundary */
|
||||
k = largest_input_value(cinfo, i, ++val, nci - 1);
|
||||
/* premultiply so that no multiplication needed in main processing */
|
||||
indexptr[j] = (_JSAMPLE)(val * blksize);
|
||||
}
|
||||
/* Pad at both ends if necessary */
|
||||
if (pad)
|
||||
for (j = 1; j <= _MAXJSAMPLE; j++) {
|
||||
indexptr[-j] = indexptr[0];
|
||||
indexptr[_MAXJSAMPLE + j] = indexptr[_MAXJSAMPLE];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create an ordered-dither array for a component having ncolors
|
||||
* distinct output values.
|
||||
*/
|
||||
|
||||
LOCAL(ODITHER_MATRIX_PTR)
|
||||
make_odither_array(j_decompress_ptr cinfo, int ncolors)
|
||||
{
|
||||
ODITHER_MATRIX_PTR odither;
|
||||
int j, k;
|
||||
JLONG num, den;
|
||||
|
||||
odither = (ODITHER_MATRIX_PTR)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(ODITHER_MATRIX));
|
||||
/* The inter-value distance for this color is _MAXJSAMPLE/(ncolors-1).
|
||||
* Hence the dither value for the matrix cell with fill order f
|
||||
* (f=0..N-1) should be (N-1-2*f)/(2*N) * _MAXJSAMPLE/(ncolors-1).
|
||||
* On 16-bit-int machine, be careful to avoid overflow.
|
||||
*/
|
||||
den = 2 * ODITHER_CELLS * ((JLONG)(ncolors - 1));
|
||||
for (j = 0; j < ODITHER_SIZE; j++) {
|
||||
for (k = 0; k < ODITHER_SIZE; k++) {
|
||||
num = ((JLONG)(ODITHER_CELLS - 1 -
|
||||
2 * ((int)base_dither_matrix[j][k]))) * _MAXJSAMPLE;
|
||||
/* Ensure round towards zero despite C's lack of consistency
|
||||
* about rounding negative values in integer division...
|
||||
*/
|
||||
odither[j][k] = (int)(num < 0 ? -((-num) / den) : num / den);
|
||||
}
|
||||
}
|
||||
return odither;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the ordered-dither tables.
|
||||
* Components having the same number of representative colors may
|
||||
* share a dither table.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
create_odither_tables(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
|
||||
ODITHER_MATRIX_PTR odither;
|
||||
int i, j, nci;
|
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||||
odither = NULL; /* search for matching prior component */
|
||||
for (j = 0; j < i; j++) {
|
||||
if (nci == cquantize->Ncolors[j]) {
|
||||
odither = cquantize->odither[j];
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (odither == NULL) /* need a new table? */
|
||||
odither = make_odither_array(cinfo, nci);
|
||||
cquantize->odither[i] = odither;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Map some rows of pixels to the output colormapped representation.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
color_quantize(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPARRAY output_buf, int num_rows)
|
||||
/* General case, no dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
|
||||
_JSAMPARRAY colorindex = cquantize->colorindex;
|
||||
register int pixcode, ci;
|
||||
register _JSAMPROW ptrin, ptrout;
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
register int nc = cinfo->out_color_components;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
ptrin = input_buf[row];
|
||||
ptrout = output_buf[row];
|
||||
for (col = width; col > 0; col--) {
|
||||
pixcode = 0;
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
pixcode += colorindex[ci][*ptrin++];
|
||||
}
|
||||
*ptrout++ = (_JSAMPLE)pixcode;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
color_quantize3(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPARRAY output_buf, int num_rows)
|
||||
/* Fast path for out_color_components==3, no dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
|
||||
register int pixcode;
|
||||
register _JSAMPROW ptrin, ptrout;
|
||||
_JSAMPROW colorindex0 = cquantize->colorindex[0];
|
||||
_JSAMPROW colorindex1 = cquantize->colorindex[1];
|
||||
_JSAMPROW colorindex2 = cquantize->colorindex[2];
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
ptrin = input_buf[row];
|
||||
ptrout = output_buf[row];
|
||||
for (col = width; col > 0; col--) {
|
||||
pixcode = colorindex0[*ptrin++];
|
||||
pixcode += colorindex1[*ptrin++];
|
||||
pixcode += colorindex2[*ptrin++];
|
||||
*ptrout++ = (_JSAMPLE)pixcode;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
quantize_ord_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPARRAY output_buf, int num_rows)
|
||||
/* General case, with ordered dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
|
||||
register _JSAMPROW input_ptr;
|
||||
register _JSAMPROW output_ptr;
|
||||
_JSAMPROW colorindex_ci;
|
||||
int *dither; /* points to active row of dither matrix */
|
||||
int row_index, col_index; /* current indexes into dither matrix */
|
||||
int nc = cinfo->out_color_components;
|
||||
int ci;
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
/* Initialize output values to 0 so can process components separately */
|
||||
jzero_far((void *)output_buf[row], (size_t)(width * sizeof(_JSAMPLE)));
|
||||
row_index = cquantize->row_index;
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
input_ptr = input_buf[row] + ci;
|
||||
output_ptr = output_buf[row];
|
||||
colorindex_ci = cquantize->colorindex[ci];
|
||||
dither = cquantize->odither[ci][row_index];
|
||||
col_index = 0;
|
||||
|
||||
for (col = width; col > 0; col--) {
|
||||
/* Form pixel value + dither, range-limit to 0.._MAXJSAMPLE,
|
||||
* select output value, accumulate into output code for this pixel.
|
||||
* Range-limiting need not be done explicitly, as we have extended
|
||||
* the colorindex table to produce the right answers for out-of-range
|
||||
* inputs. The maximum dither is +- _MAXJSAMPLE; this sets the
|
||||
* required amount of padding.
|
||||
*/
|
||||
*output_ptr +=
|
||||
colorindex_ci[*input_ptr + dither[col_index]];
|
||||
input_ptr += nc;
|
||||
output_ptr++;
|
||||
col_index = (col_index + 1) & ODITHER_MASK;
|
||||
}
|
||||
}
|
||||
/* Advance row index for next row */
|
||||
row_index = (row_index + 1) & ODITHER_MASK;
|
||||
cquantize->row_index = row_index;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
quantize3_ord_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPARRAY output_buf, int num_rows)
|
||||
/* Fast path for out_color_components==3, with ordered dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
|
||||
register int pixcode;
|
||||
register _JSAMPROW input_ptr;
|
||||
register _JSAMPROW output_ptr;
|
||||
_JSAMPROW colorindex0 = cquantize->colorindex[0];
|
||||
_JSAMPROW colorindex1 = cquantize->colorindex[1];
|
||||
_JSAMPROW colorindex2 = cquantize->colorindex[2];
|
||||
int *dither0; /* points to active row of dither matrix */
|
||||
int *dither1;
|
||||
int *dither2;
|
||||
int row_index, col_index; /* current indexes into dither matrix */
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
row_index = cquantize->row_index;
|
||||
input_ptr = input_buf[row];
|
||||
output_ptr = output_buf[row];
|
||||
dither0 = cquantize->odither[0][row_index];
|
||||
dither1 = cquantize->odither[1][row_index];
|
||||
dither2 = cquantize->odither[2][row_index];
|
||||
col_index = 0;
|
||||
|
||||
for (col = width; col > 0; col--) {
|
||||
pixcode = colorindex0[(*input_ptr++) + dither0[col_index]];
|
||||
pixcode += colorindex1[(*input_ptr++) + dither1[col_index]];
|
||||
pixcode += colorindex2[(*input_ptr++) + dither2[col_index]];
|
||||
*output_ptr++ = (_JSAMPLE)pixcode;
|
||||
col_index = (col_index + 1) & ODITHER_MASK;
|
||||
}
|
||||
row_index = (row_index + 1) & ODITHER_MASK;
|
||||
cquantize->row_index = row_index;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
quantize_fs_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
|
||||
_JSAMPARRAY output_buf, int num_rows)
|
||||
/* General case, with Floyd-Steinberg dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
|
||||
register LOCFSERROR cur; /* current error or pixel value */
|
||||
LOCFSERROR belowerr; /* error for pixel below cur */
|
||||
LOCFSERROR bpreverr; /* error for below/prev col */
|
||||
LOCFSERROR bnexterr; /* error for below/next col */
|
||||
LOCFSERROR delta;
|
||||
register FSERRPTR errorptr; /* => fserrors[] at column before current */
|
||||
register _JSAMPROW input_ptr;
|
||||
register _JSAMPROW output_ptr;
|
||||
_JSAMPROW colorindex_ci;
|
||||
_JSAMPROW colormap_ci;
|
||||
int pixcode;
|
||||
int nc = cinfo->out_color_components;
|
||||
int dir; /* 1 for left-to-right, -1 for right-to-left */
|
||||
int dirnc; /* dir * nc */
|
||||
int ci;
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
_JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
|
||||
SHIFT_TEMPS
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
/* Initialize output values to 0 so can process components separately */
|
||||
jzero_far((void *)output_buf[row], (size_t)(width * sizeof(_JSAMPLE)));
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
input_ptr = input_buf[row] + ci;
|
||||
output_ptr = output_buf[row];
|
||||
if (cquantize->on_odd_row) {
|
||||
/* work right to left in this row */
|
||||
input_ptr += (width - 1) * nc; /* so point to rightmost pixel */
|
||||
output_ptr += width - 1;
|
||||
dir = -1;
|
||||
dirnc = -nc;
|
||||
errorptr = cquantize->fserrors[ci] + (width + 1); /* => entry after last column */
|
||||
} else {
|
||||
/* work left to right in this row */
|
||||
dir = 1;
|
||||
dirnc = nc;
|
||||
errorptr = cquantize->fserrors[ci]; /* => entry before first column */
|
||||
}
|
||||
colorindex_ci = cquantize->colorindex[ci];
|
||||
colormap_ci = cquantize->sv_colormap[ci];
|
||||
/* Preset error values: no error propagated to first pixel from left */
|
||||
cur = 0;
|
||||
/* and no error propagated to row below yet */
|
||||
belowerr = bpreverr = 0;
|
||||
|
||||
for (col = width; col > 0; col--) {
|
||||
/* cur holds the error propagated from the previous pixel on the
|
||||
* current line. Add the error propagated from the previous line
|
||||
* to form the complete error correction term for this pixel, and
|
||||
* round the error term (which is expressed * 16) to an integer.
|
||||
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
|
||||
* for either sign of the error value.
|
||||
* Note: errorptr points to *previous* column's array entry.
|
||||
*/
|
||||
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
|
||||
/* Form pixel value + error, and range-limit to 0.._MAXJSAMPLE.
|
||||
* The maximum error is +- _MAXJSAMPLE; this sets the required size
|
||||
* of the range_limit array.
|
||||
*/
|
||||
cur += *input_ptr;
|
||||
cur = range_limit[cur];
|
||||
/* Select output value, accumulate into output code for this pixel */
|
||||
pixcode = colorindex_ci[cur];
|
||||
*output_ptr += (_JSAMPLE)pixcode;
|
||||
/* Compute actual representation error at this pixel */
|
||||
/* Note: we can do this even though we don't have the final */
|
||||
/* pixel code, because the colormap is orthogonal. */
|
||||
cur -= colormap_ci[pixcode];
|
||||
/* Compute error fractions to be propagated to adjacent pixels.
|
||||
* Add these into the running sums, and simultaneously shift the
|
||||
* next-line error sums left by 1 column.
|
||||
*/
|
||||
bnexterr = cur;
|
||||
delta = cur * 2;
|
||||
cur += delta; /* form error * 3 */
|
||||
errorptr[0] = (FSERROR)(bpreverr + cur);
|
||||
cur += delta; /* form error * 5 */
|
||||
bpreverr = belowerr + cur;
|
||||
belowerr = bnexterr;
|
||||
cur += delta; /* form error * 7 */
|
||||
/* At this point cur contains the 7/16 error value to be propagated
|
||||
* to the next pixel on the current line, and all the errors for the
|
||||
* next line have been shifted over. We are therefore ready to move on.
|
||||
*/
|
||||
input_ptr += dirnc; /* advance input ptr to next column */
|
||||
output_ptr += dir; /* advance output ptr to next column */
|
||||
errorptr += dir; /* advance errorptr to current column */
|
||||
}
|
||||
/* Post-loop cleanup: we must unload the final error value into the
|
||||
* final fserrors[] entry. Note we need not unload belowerr because
|
||||
* it is for the dummy column before or after the actual array.
|
||||
*/
|
||||
errorptr[0] = (FSERROR)bpreverr; /* unload prev err into array */
|
||||
}
|
||||
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Allocate workspace for Floyd-Steinberg errors.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
alloc_fs_workspace(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
|
||||
size_t arraysize;
|
||||
int i;
|
||||
|
||||
arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR));
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
cquantize->fserrors[i] = (FSERRPTR)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for one-pass color quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_1_quant(j_decompress_ptr cinfo, boolean is_pre_scan)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
|
||||
size_t arraysize;
|
||||
int i;
|
||||
|
||||
/* Install my colormap. */
|
||||
cinfo->colormap = (JSAMPARRAY)cquantize->sv_colormap;
|
||||
cinfo->actual_number_of_colors = cquantize->sv_actual;
|
||||
|
||||
/* Initialize for desired dithering mode. */
|
||||
switch (cinfo->dither_mode) {
|
||||
case JDITHER_NONE:
|
||||
if (cinfo->out_color_components == 3)
|
||||
cquantize->pub._color_quantize = color_quantize3;
|
||||
else
|
||||
cquantize->pub._color_quantize = color_quantize;
|
||||
break;
|
||||
case JDITHER_ORDERED:
|
||||
if (cinfo->out_color_components == 3)
|
||||
cquantize->pub._color_quantize = quantize3_ord_dither;
|
||||
else
|
||||
cquantize->pub._color_quantize = quantize_ord_dither;
|
||||
cquantize->row_index = 0; /* initialize state for ordered dither */
|
||||
/* If user changed to ordered dither from another mode,
|
||||
* we must recreate the color index table with padding.
|
||||
* This will cost extra space, but probably isn't very likely.
|
||||
*/
|
||||
if (!cquantize->is_padded)
|
||||
create_colorindex(cinfo);
|
||||
/* Create ordered-dither tables if we didn't already. */
|
||||
if (cquantize->odither[0] == NULL)
|
||||
create_odither_tables(cinfo);
|
||||
break;
|
||||
case JDITHER_FS:
|
||||
cquantize->pub._color_quantize = quantize_fs_dither;
|
||||
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
|
||||
/* Allocate Floyd-Steinberg workspace if didn't already. */
|
||||
if (cquantize->fserrors[0] == NULL)
|
||||
alloc_fs_workspace(cinfo);
|
||||
/* Initialize the propagated errors to zero. */
|
||||
arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR));
|
||||
for (i = 0; i < cinfo->out_color_components; i++)
|
||||
jzero_far((void *)cquantize->fserrors[i], arraysize);
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass_1_quant(j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work in 1-pass case */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Switch to a new external colormap between output passes.
|
||||
* Shouldn't get to this module!
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
new_color_map_1_quant(j_decompress_ptr cinfo)
|
||||
{
|
||||
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for 1-pass color quantization.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
_jinit_1pass_quantizer(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize;
|
||||
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
/* Color quantization is not supported with lossless JPEG images */
|
||||
if (cinfo->master->lossless)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
|
||||
cquantize = (my_cquantize_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_cquantizer));
|
||||
cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize;
|
||||
cquantize->pub.start_pass = start_pass_1_quant;
|
||||
cquantize->pub.finish_pass = finish_pass_1_quant;
|
||||
cquantize->pub.new_color_map = new_color_map_1_quant;
|
||||
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
|
||||
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
|
||||
|
||||
/* Make sure my internal arrays won't overflow */
|
||||
if (cinfo->out_color_components > MAX_Q_COMPS)
|
||||
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
|
||||
/* Make sure colormap indexes can be represented by _JSAMPLEs */
|
||||
if (cinfo->desired_number_of_colors > (_MAXJSAMPLE + 1))
|
||||
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, _MAXJSAMPLE + 1);
|
||||
|
||||
/* Create the colormap and color index table. */
|
||||
create_colormap(cinfo);
|
||||
create_colorindex(cinfo);
|
||||
|
||||
/* Allocate Floyd-Steinberg workspace now if requested.
|
||||
* We do this now since it may affect the memory manager's space
|
||||
* calculations. If the user changes to FS dither mode in a later pass, we
|
||||
* will allocate the space then, and will possibly overrun the
|
||||
* max_memory_to_use setting.
|
||||
*/
|
||||
if (cinfo->dither_mode == JDITHER_FS)
|
||||
alloc_fs_workspace(cinfo);
|
||||
}
|
||||
|
||||
#endif /* defined(QUANT_1PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16 */
|
||||
1293
thirdparty/libjpeg-turbo/src/jquant2.c
vendored
Normal file
1293
thirdparty/libjpeg-turbo/src/jquant2.c
vendored
Normal file
File diff suppressed because it is too large
Load Diff
333
thirdparty/libjpeg-turbo/src/jsamplecomp.h
vendored
Normal file
333
thirdparty/libjpeg-turbo/src/jsamplecomp.h
vendored
Normal file
@@ -0,0 +1,333 @@
|
||||
/*
|
||||
* jsamplecomp.h
|
||||
*
|
||||
* Copyright (C) 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*/
|
||||
|
||||
/* In source files that must be compiled for multiple data precisions, we
|
||||
* prefix all precision-dependent data types, macros, methods, fields, and
|
||||
* function names with an underscore. Including this file replaces those
|
||||
* precision-independent tokens with their precision-dependent equivalents,
|
||||
* based on the value of BITS_IN_JSAMPLE.
|
||||
*/
|
||||
|
||||
#ifndef JSAMPLECOMP_H
|
||||
#define JSAMPLECOMP_H
|
||||
|
||||
#if BITS_IN_JSAMPLE == 16
|
||||
|
||||
/* Sample data types and macros (jmorecfg.h) */
|
||||
#define _JSAMPLE J16SAMPLE
|
||||
|
||||
#define _MAXJSAMPLE MAXJ16SAMPLE
|
||||
#define _CENTERJSAMPLE CENTERJ16SAMPLE
|
||||
|
||||
#define _JSAMPROW J16SAMPROW
|
||||
#define _JSAMPARRAY J16SAMPARRAY
|
||||
#define _JSAMPIMAGE J16SAMPIMAGE
|
||||
|
||||
/* External functions (jpeglib.h) */
|
||||
#define _jpeg_write_scanlines jpeg16_write_scanlines
|
||||
#define _jpeg_read_scanlines jpeg16_read_scanlines
|
||||
|
||||
/* Internal methods (jpegint.h) */
|
||||
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
/* Use the 16-bit method in the jpeg_c_main_controller structure. */
|
||||
#define _process_data process_data_16
|
||||
/* Use the 16-bit method in the jpeg_c_prep_controller structure. */
|
||||
#define _pre_process_data pre_process_data_16
|
||||
/* Use the 16-bit method in the jpeg_c_coef_controller structure. */
|
||||
#define _compress_data compress_data_16
|
||||
/* Use the 16-bit method in the jpeg_color_converter structure. */
|
||||
#define _color_convert color_convert_16
|
||||
/* Use the 16-bit method in the jpeg_downsampler structure. */
|
||||
#define _downsample downsample_16
|
||||
#endif
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
/* Use the 16-bit method in the jpeg_d_main_controller structure. */
|
||||
#define _process_data process_data_16
|
||||
/* Use the 16-bit method in the jpeg_d_coef_controller structure. */
|
||||
#define _decompress_data decompress_data_16
|
||||
/* Use the 16-bit method in the jpeg_d_post_controller structure. */
|
||||
#define _post_process_data post_process_data_16
|
||||
/* Use the 16-bit method in the jpeg_upsampler structure. */
|
||||
#define _upsample upsample_16
|
||||
/* Use the 16-bit method in the jpeg_color_converter structure. */
|
||||
#define _color_convert color_convert_16
|
||||
#endif
|
||||
|
||||
/* Global internal functions (jpegint.h) */
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
#define _jinit_c_main_controller j16init_c_main_controller
|
||||
#define _jinit_c_prep_controller j16init_c_prep_controller
|
||||
#define _jinit_color_converter j16init_color_converter
|
||||
#define _jinit_downsampler j16init_downsampler
|
||||
#define _jinit_c_diff_controller j16init_c_diff_controller
|
||||
#define _jinit_lossless_compressor j16init_lossless_compressor
|
||||
#endif
|
||||
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
#define _jinit_d_main_controller j16init_d_main_controller
|
||||
#define _jinit_d_post_controller j16init_d_post_controller
|
||||
#define _jinit_upsampler j16init_upsampler
|
||||
#define _jinit_color_deconverter j16init_color_deconverter
|
||||
#define _jinit_merged_upsampler j16init_merged_upsampler
|
||||
#define _jinit_d_diff_controller j16init_d_diff_controller
|
||||
#define _jinit_lossless_decompressor j16init_lossless_decompressor
|
||||
#endif
|
||||
|
||||
#if defined(C_LOSSLESS_SUPPORTED) || defined(D_LOSSLESS_SUPPORTED)
|
||||
#define _jcopy_sample_rows j16copy_sample_rows
|
||||
#endif
|
||||
|
||||
/* Internal fields (cdjpeg.h) */
|
||||
|
||||
#if defined(C_LOSSLESS_SUPPORTED) || defined(D_LOSSLESS_SUPPORTED)
|
||||
/* Use the 16-bit buffer in the cjpeg_source_struct and djpeg_dest_struct
|
||||
structures. */
|
||||
#define _buffer buffer16
|
||||
#endif
|
||||
|
||||
/* Image I/O functions (cdjpeg.h) */
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
#define _jinit_read_ppm j16init_read_ppm
|
||||
#endif
|
||||
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
#define _jinit_write_ppm j16init_write_ppm
|
||||
#endif
|
||||
|
||||
#elif BITS_IN_JSAMPLE == 12
|
||||
|
||||
/* Sample data types and macros (jmorecfg.h) */
|
||||
#define _JSAMPLE J12SAMPLE
|
||||
|
||||
#define _MAXJSAMPLE MAXJ12SAMPLE
|
||||
#define _CENTERJSAMPLE CENTERJ12SAMPLE
|
||||
|
||||
#define _JSAMPROW J12SAMPROW
|
||||
#define _JSAMPARRAY J12SAMPARRAY
|
||||
#define _JSAMPIMAGE J12SAMPIMAGE
|
||||
|
||||
/* External functions (jpeglib.h) */
|
||||
#define _jpeg_write_scanlines jpeg12_write_scanlines
|
||||
#define _jpeg_write_raw_data jpeg12_write_raw_data
|
||||
#define _jpeg_read_scanlines jpeg12_read_scanlines
|
||||
#define _jpeg_skip_scanlines jpeg12_skip_scanlines
|
||||
#define _jpeg_crop_scanline jpeg12_crop_scanline
|
||||
#define _jpeg_read_raw_data jpeg12_read_raw_data
|
||||
|
||||
/* Internal methods (jpegint.h) */
|
||||
|
||||
/* Use the 12-bit method in the jpeg_c_main_controller structure. */
|
||||
#define _process_data process_data_12
|
||||
/* Use the 12-bit method in the jpeg_c_prep_controller structure. */
|
||||
#define _pre_process_data pre_process_data_12
|
||||
/* Use the 12-bit method in the jpeg_c_coef_controller structure. */
|
||||
#define _compress_data compress_data_12
|
||||
/* Use the 12-bit method in the jpeg_color_converter structure. */
|
||||
#define _color_convert color_convert_12
|
||||
/* Use the 12-bit method in the jpeg_downsampler structure. */
|
||||
#define _downsample downsample_12
|
||||
/* Use the 12-bit method in the jpeg_forward_dct structure. */
|
||||
#define _forward_DCT forward_DCT_12
|
||||
/* Use the 12-bit method in the jpeg_d_main_controller structure. */
|
||||
#define _process_data process_data_12
|
||||
/* Use the 12-bit method in the jpeg_d_coef_controller structure. */
|
||||
#define _decompress_data decompress_data_12
|
||||
/* Use the 12-bit method in the jpeg_d_post_controller structure. */
|
||||
#define _post_process_data post_process_data_12
|
||||
/* Use the 12-bit method in the jpeg_inverse_dct structure. */
|
||||
#define _inverse_DCT_method_ptr inverse_DCT_12_method_ptr
|
||||
#define _inverse_DCT inverse_DCT_12
|
||||
/* Use the 12-bit method in the jpeg_upsampler structure. */
|
||||
#define _upsample upsample_12
|
||||
/* Use the 12-bit method in the jpeg_color_converter structure. */
|
||||
#define _color_convert color_convert_12
|
||||
/* Use the 12-bit method in the jpeg_color_quantizer structure. */
|
||||
#define _color_quantize color_quantize_12
|
||||
|
||||
/* Global internal functions (jpegint.h) */
|
||||
#define _jinit_c_main_controller j12init_c_main_controller
|
||||
#define _jinit_c_prep_controller j12init_c_prep_controller
|
||||
#define _jinit_c_coef_controller j12init_c_coef_controller
|
||||
#define _jinit_color_converter j12init_color_converter
|
||||
#define _jinit_downsampler j12init_downsampler
|
||||
#define _jinit_forward_dct j12init_forward_dct
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
#define _jinit_c_diff_controller j12init_c_diff_controller
|
||||
#define _jinit_lossless_compressor j12init_lossless_compressor
|
||||
#endif
|
||||
|
||||
#define _jinit_d_main_controller j12init_d_main_controller
|
||||
#define _jinit_d_coef_controller j12init_d_coef_controller
|
||||
#define _jinit_d_post_controller j12init_d_post_controller
|
||||
#define _jinit_inverse_dct j12init_inverse_dct
|
||||
#define _jinit_upsampler j12init_upsampler
|
||||
#define _jinit_color_deconverter j12init_color_deconverter
|
||||
#define _jinit_1pass_quantizer j12init_1pass_quantizer
|
||||
#define _jinit_2pass_quantizer j12init_2pass_quantizer
|
||||
#define _jinit_merged_upsampler j12init_merged_upsampler
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
#define _jinit_d_diff_controller j12init_d_diff_controller
|
||||
#define _jinit_lossless_decompressor j12init_lossless_decompressor
|
||||
#endif
|
||||
|
||||
#define _jcopy_sample_rows j12copy_sample_rows
|
||||
|
||||
/* Global internal functions (jdct.h) */
|
||||
#define _jpeg_fdct_islow jpeg12_fdct_islow
|
||||
#define _jpeg_fdct_ifast jpeg12_fdct_ifast
|
||||
|
||||
#define _jpeg_idct_islow jpeg12_idct_islow
|
||||
#define _jpeg_idct_ifast jpeg12_idct_ifast
|
||||
#define _jpeg_idct_float jpeg12_idct_float
|
||||
#define _jpeg_idct_7x7 jpeg12_idct_7x7
|
||||
#define _jpeg_idct_6x6 jpeg12_idct_6x6
|
||||
#define _jpeg_idct_5x5 jpeg12_idct_5x5
|
||||
#define _jpeg_idct_4x4 jpeg12_idct_4x4
|
||||
#define _jpeg_idct_3x3 jpeg12_idct_3x3
|
||||
#define _jpeg_idct_2x2 jpeg12_idct_2x2
|
||||
#define _jpeg_idct_1x1 jpeg12_idct_1x1
|
||||
#define _jpeg_idct_9x9 jpeg12_idct_9x9
|
||||
#define _jpeg_idct_10x10 jpeg12_idct_10x10
|
||||
#define _jpeg_idct_11x11 jpeg12_idct_11x11
|
||||
#define _jpeg_idct_12x12 jpeg12_idct_12x12
|
||||
#define _jpeg_idct_13x13 jpeg12_idct_13x13
|
||||
#define _jpeg_idct_14x14 jpeg12_idct_14x14
|
||||
#define _jpeg_idct_15x15 jpeg12_idct_15x15
|
||||
#define _jpeg_idct_16x16 jpeg12_idct_16x16
|
||||
|
||||
/* Internal fields (cdjpeg.h) */
|
||||
|
||||
/* Use the 12-bit buffer in the cjpeg_source_struct and djpeg_dest_struct
|
||||
structures. */
|
||||
#define _buffer buffer12
|
||||
|
||||
/* Image I/O functions (cdjpeg.h) */
|
||||
#define _jinit_write_gif j12init_write_gif
|
||||
#define _jinit_read_ppm j12init_read_ppm
|
||||
#define _jinit_write_ppm j12init_write_ppm
|
||||
|
||||
#define _read_color_map read_color_map_12
|
||||
|
||||
#else /* BITS_IN_JSAMPLE */
|
||||
|
||||
/* Sample data types and macros (jmorecfg.h) */
|
||||
#define _JSAMPLE JSAMPLE
|
||||
|
||||
#define _MAXJSAMPLE MAXJSAMPLE
|
||||
#define _CENTERJSAMPLE CENTERJSAMPLE
|
||||
|
||||
#define _JSAMPROW JSAMPROW
|
||||
#define _JSAMPARRAY JSAMPARRAY
|
||||
#define _JSAMPIMAGE JSAMPIMAGE
|
||||
|
||||
/* External functions (jpeglib.h) */
|
||||
#define _jpeg_write_scanlines jpeg_write_scanlines
|
||||
#define _jpeg_write_raw_data jpeg_write_raw_data
|
||||
#define _jpeg_read_scanlines jpeg_read_scanlines
|
||||
#define _jpeg_skip_scanlines jpeg_skip_scanlines
|
||||
#define _jpeg_crop_scanline jpeg_crop_scanline
|
||||
#define _jpeg_read_raw_data jpeg_read_raw_data
|
||||
|
||||
/* Internal methods (jpegint.h) */
|
||||
|
||||
/* Use the 8-bit method in the jpeg_c_main_controller structure. */
|
||||
#define _process_data process_data
|
||||
/* Use the 8-bit method in the jpeg_c_prep_controller structure. */
|
||||
#define _pre_process_data pre_process_data
|
||||
/* Use the 8-bit method in the jpeg_c_coef_controller structure. */
|
||||
#define _compress_data compress_data
|
||||
/* Use the 8-bit method in the jpeg_color_converter structure. */
|
||||
#define _color_convert color_convert
|
||||
/* Use the 8-bit method in the jpeg_downsampler structure. */
|
||||
#define _downsample downsample
|
||||
/* Use the 8-bit method in the jpeg_forward_dct structure. */
|
||||
#define _forward_DCT forward_DCT
|
||||
/* Use the 8-bit method in the jpeg_d_main_controller structure. */
|
||||
#define _process_data process_data
|
||||
/* Use the 8-bit method in the jpeg_d_coef_controller structure. */
|
||||
#define _decompress_data decompress_data
|
||||
/* Use the 8-bit method in the jpeg_d_post_controller structure. */
|
||||
#define _post_process_data post_process_data
|
||||
/* Use the 8-bit method in the jpeg_inverse_dct structure. */
|
||||
#define _inverse_DCT_method_ptr inverse_DCT_method_ptr
|
||||
#define _inverse_DCT inverse_DCT
|
||||
/* Use the 8-bit method in the jpeg_upsampler structure. */
|
||||
#define _upsample upsample
|
||||
/* Use the 8-bit method in the jpeg_color_converter structure. */
|
||||
#define _color_convert color_convert
|
||||
/* Use the 8-bit method in the jpeg_color_quantizer structure. */
|
||||
#define _color_quantize color_quantize
|
||||
|
||||
/* Global internal functions (jpegint.h) */
|
||||
#define _jinit_c_main_controller jinit_c_main_controller
|
||||
#define _jinit_c_prep_controller jinit_c_prep_controller
|
||||
#define _jinit_c_coef_controller jinit_c_coef_controller
|
||||
#define _jinit_color_converter jinit_color_converter
|
||||
#define _jinit_downsampler jinit_downsampler
|
||||
#define _jinit_forward_dct jinit_forward_dct
|
||||
#ifdef C_LOSSLESS_SUPPORTED
|
||||
#define _jinit_c_diff_controller jinit_c_diff_controller
|
||||
#define _jinit_lossless_compressor jinit_lossless_compressor
|
||||
#endif
|
||||
|
||||
#define _jinit_d_main_controller jinit_d_main_controller
|
||||
#define _jinit_d_coef_controller jinit_d_coef_controller
|
||||
#define _jinit_d_post_controller jinit_d_post_controller
|
||||
#define _jinit_inverse_dct jinit_inverse_dct
|
||||
#define _jinit_upsampler jinit_upsampler
|
||||
#define _jinit_color_deconverter jinit_color_deconverter
|
||||
#define _jinit_1pass_quantizer jinit_1pass_quantizer
|
||||
#define _jinit_2pass_quantizer jinit_2pass_quantizer
|
||||
#define _jinit_merged_upsampler jinit_merged_upsampler
|
||||
#ifdef D_LOSSLESS_SUPPORTED
|
||||
#define _jinit_d_diff_controller jinit_d_diff_controller
|
||||
#define _jinit_lossless_decompressor jinit_lossless_decompressor
|
||||
#endif
|
||||
|
||||
#define _jcopy_sample_rows jcopy_sample_rows
|
||||
|
||||
/* Global internal functions (jdct.h) */
|
||||
#define _jpeg_fdct_islow jpeg_fdct_islow
|
||||
#define _jpeg_fdct_ifast jpeg_fdct_ifast
|
||||
|
||||
#define _jpeg_idct_islow jpeg_idct_islow
|
||||
#define _jpeg_idct_ifast jpeg_idct_ifast
|
||||
#define _jpeg_idct_float jpeg_idct_float
|
||||
#define _jpeg_idct_7x7 jpeg_idct_7x7
|
||||
#define _jpeg_idct_6x6 jpeg_idct_6x6
|
||||
#define _jpeg_idct_5x5 jpeg_idct_5x5
|
||||
#define _jpeg_idct_4x4 jpeg_idct_4x4
|
||||
#define _jpeg_idct_3x3 jpeg_idct_3x3
|
||||
#define _jpeg_idct_2x2 jpeg_idct_2x2
|
||||
#define _jpeg_idct_1x1 jpeg_idct_1x1
|
||||
#define _jpeg_idct_9x9 jpeg_idct_9x9
|
||||
#define _jpeg_idct_10x10 jpeg_idct_10x10
|
||||
#define _jpeg_idct_11x11 jpeg_idct_11x11
|
||||
#define _jpeg_idct_12x12 jpeg_idct_12x12
|
||||
#define _jpeg_idct_13x13 jpeg_idct_13x13
|
||||
#define _jpeg_idct_14x14 jpeg_idct_14x14
|
||||
#define _jpeg_idct_15x15 jpeg_idct_15x15
|
||||
#define _jpeg_idct_16x16 jpeg_idct_16x16
|
||||
|
||||
/* Internal fields (cdjpeg.h) */
|
||||
|
||||
/* Use the 8-bit buffer in the cjpeg_source_struct and djpeg_dest_struct
|
||||
structures. */
|
||||
#define _buffer buffer
|
||||
|
||||
/* Image I/O functions (cdjpeg.h) */
|
||||
#define _jinit_write_gif jinit_write_gif
|
||||
#define _jinit_read_ppm jinit_read_ppm
|
||||
#define _jinit_write_ppm jinit_write_ppm
|
||||
|
||||
#define _read_color_map read_color_map
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE */
|
||||
|
||||
#endif /* JSAMPLECOMP_H */
|
||||
127
thirdparty/libjpeg-turbo/src/jsimd.h
vendored
Normal file
127
thirdparty/libjpeg-turbo/src/jsimd.h
vendored
Normal file
@@ -0,0 +1,127 @@
|
||||
/*
|
||||
* jsimd.h
|
||||
*
|
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||||
* Copyright (C) 2011, 2014, 2022, D. R. Commander.
|
||||
* Copyright (C) 2015-2016, 2018, 2022, Matthieu Darbois.
|
||||
* Copyright (C) 2020, Arm Limited.
|
||||
*
|
||||
* Based on the x86 SIMD extension for IJG JPEG library,
|
||||
* Copyright (C) 1999-2006, MIYASAKA Masaru.
|
||||
* For conditions of distribution and use, see copyright notice in jsimdext.inc
|
||||
*
|
||||
*/
|
||||
|
||||
#ifdef WITH_SIMD
|
||||
|
||||
#include "jchuff.h" /* Declarations shared with jcphuff.c */
|
||||
|
||||
EXTERN(int) jsimd_can_rgb_ycc(void);
|
||||
EXTERN(int) jsimd_can_rgb_gray(void);
|
||||
EXTERN(int) jsimd_can_ycc_rgb(void);
|
||||
EXTERN(int) jsimd_can_ycc_rgb565(void);
|
||||
EXTERN(int) jsimd_c_can_null_convert(void);
|
||||
|
||||
EXTERN(void) jsimd_rgb_ycc_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows);
|
||||
EXTERN(void) jsimd_rgb_gray_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows);
|
||||
EXTERN(void) jsimd_ycc_rgb_convert(j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows);
|
||||
EXTERN(void) jsimd_ycc_rgb565_convert(j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows);
|
||||
EXTERN(void) jsimd_c_null_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPIMAGE output_buf, JDIMENSION output_row,
|
||||
int num_rows);
|
||||
|
||||
EXTERN(int) jsimd_can_h2v2_downsample(void);
|
||||
EXTERN(int) jsimd_can_h2v1_downsample(void);
|
||||
|
||||
EXTERN(void) jsimd_h2v2_downsample(j_compress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JSAMPARRAY input_data,
|
||||
JSAMPARRAY output_data);
|
||||
|
||||
EXTERN(int) jsimd_can_h2v2_smooth_downsample(void);
|
||||
|
||||
EXTERN(void) jsimd_h2v2_smooth_downsample(j_compress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JSAMPARRAY input_data,
|
||||
JSAMPARRAY output_data);
|
||||
|
||||
EXTERN(void) jsimd_h2v1_downsample(j_compress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JSAMPARRAY input_data,
|
||||
JSAMPARRAY output_data);
|
||||
|
||||
EXTERN(int) jsimd_can_h2v2_upsample(void);
|
||||
EXTERN(int) jsimd_can_h2v1_upsample(void);
|
||||
EXTERN(int) jsimd_can_int_upsample(void);
|
||||
|
||||
EXTERN(void) jsimd_h2v2_upsample(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JSAMPARRAY input_data,
|
||||
JSAMPARRAY *output_data_ptr);
|
||||
EXTERN(void) jsimd_h2v1_upsample(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JSAMPARRAY input_data,
|
||||
JSAMPARRAY *output_data_ptr);
|
||||
EXTERN(void) jsimd_int_upsample(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JSAMPARRAY input_data,
|
||||
JSAMPARRAY *output_data_ptr);
|
||||
|
||||
EXTERN(int) jsimd_can_h2v2_fancy_upsample(void);
|
||||
EXTERN(int) jsimd_can_h2v1_fancy_upsample(void);
|
||||
EXTERN(int) jsimd_can_h1v2_fancy_upsample(void);
|
||||
|
||||
EXTERN(void) jsimd_h2v2_fancy_upsample(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JSAMPARRAY input_data,
|
||||
JSAMPARRAY *output_data_ptr);
|
||||
EXTERN(void) jsimd_h2v1_fancy_upsample(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JSAMPARRAY input_data,
|
||||
JSAMPARRAY *output_data_ptr);
|
||||
EXTERN(void) jsimd_h1v2_fancy_upsample(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JSAMPARRAY input_data,
|
||||
JSAMPARRAY *output_data_ptr);
|
||||
|
||||
EXTERN(int) jsimd_can_h2v2_merged_upsample(void);
|
||||
EXTERN(int) jsimd_can_h2v1_merged_upsample(void);
|
||||
|
||||
EXTERN(void) jsimd_h2v2_merged_upsample(j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf);
|
||||
EXTERN(void) jsimd_h2v1_merged_upsample(j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf);
|
||||
|
||||
EXTERN(int) jsimd_can_huff_encode_one_block(void);
|
||||
|
||||
EXTERN(JOCTET *) jsimd_huff_encode_one_block(void *state, JOCTET *buffer,
|
||||
JCOEFPTR block, int last_dc_val,
|
||||
c_derived_tbl *dctbl,
|
||||
c_derived_tbl *actbl);
|
||||
|
||||
EXTERN(int) jsimd_can_encode_mcu_AC_first_prepare(void);
|
||||
|
||||
EXTERN(void) jsimd_encode_mcu_AC_first_prepare
|
||||
(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al,
|
||||
UJCOEF *values, size_t *zerobits);
|
||||
|
||||
EXTERN(int) jsimd_can_encode_mcu_AC_refine_prepare(void);
|
||||
|
||||
EXTERN(int) jsimd_encode_mcu_AC_refine_prepare
|
||||
(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al,
|
||||
UJCOEF *absvalues, size_t *bits);
|
||||
|
||||
#endif /* WITH_SIMD */
|
||||
70
thirdparty/libjpeg-turbo/src/jsimddct.h
vendored
Normal file
70
thirdparty/libjpeg-turbo/src/jsimddct.h
vendored
Normal file
@@ -0,0 +1,70 @@
|
||||
/*
|
||||
* jsimddct.h
|
||||
*
|
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||||
*
|
||||
* Based on the x86 SIMD extension for IJG JPEG library,
|
||||
* Copyright (C) 1999-2006, MIYASAKA Masaru.
|
||||
* For conditions of distribution and use, see copyright notice in jsimdext.inc
|
||||
*
|
||||
*/
|
||||
|
||||
EXTERN(int) jsimd_can_convsamp(void);
|
||||
EXTERN(int) jsimd_can_convsamp_float(void);
|
||||
|
||||
EXTERN(void) jsimd_convsamp(JSAMPARRAY sample_data, JDIMENSION start_col,
|
||||
DCTELEM *workspace);
|
||||
EXTERN(void) jsimd_convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col,
|
||||
FAST_FLOAT *workspace);
|
||||
|
||||
EXTERN(int) jsimd_can_fdct_islow(void);
|
||||
EXTERN(int) jsimd_can_fdct_ifast(void);
|
||||
EXTERN(int) jsimd_can_fdct_float(void);
|
||||
|
||||
EXTERN(void) jsimd_fdct_islow(DCTELEM *data);
|
||||
EXTERN(void) jsimd_fdct_ifast(DCTELEM *data);
|
||||
EXTERN(void) jsimd_fdct_float(FAST_FLOAT *data);
|
||||
|
||||
EXTERN(int) jsimd_can_quantize(void);
|
||||
EXTERN(int) jsimd_can_quantize_float(void);
|
||||
|
||||
EXTERN(void) jsimd_quantize(JCOEFPTR coef_block, DCTELEM *divisors,
|
||||
DCTELEM *workspace);
|
||||
EXTERN(void) jsimd_quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors,
|
||||
FAST_FLOAT *workspace);
|
||||
|
||||
EXTERN(int) jsimd_can_idct_2x2(void);
|
||||
EXTERN(int) jsimd_can_idct_4x4(void);
|
||||
EXTERN(int) jsimd_can_idct_6x6(void);
|
||||
EXTERN(int) jsimd_can_idct_12x12(void);
|
||||
|
||||
EXTERN(void) jsimd_idct_2x2(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr, JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col);
|
||||
EXTERN(void) jsimd_idct_4x4(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr, JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col);
|
||||
EXTERN(void) jsimd_idct_6x6(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr, JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col);
|
||||
EXTERN(void) jsimd_idct_12x12(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
|
||||
EXTERN(int) jsimd_can_idct_islow(void);
|
||||
EXTERN(int) jsimd_can_idct_ifast(void);
|
||||
EXTERN(int) jsimd_can_idct_float(void);
|
||||
|
||||
EXTERN(void) jsimd_idct_islow(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
EXTERN(void) jsimd_idct_ifast(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
EXTERN(void) jsimd_idct_float(j_decompress_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf,
|
||||
JDIMENSION output_col);
|
||||
144
thirdparty/libjpeg-turbo/src/jstdhuff.c
vendored
Normal file
144
thirdparty/libjpeg-turbo/src/jstdhuff.c
vendored
Normal file
@@ -0,0 +1,144 @@
|
||||
/*
|
||||
* jstdhuff.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2013, 2022, 2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains routines to set the default Huffman tables, if they are
|
||||
* not already set.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Huffman table setup routines
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
add_huff_table(j_common_ptr cinfo, JHUFF_TBL **htblptr, const UINT8 *bits,
|
||||
const UINT8 *val)
|
||||
/* Define a Huffman table */
|
||||
{
|
||||
int nsymbols, len;
|
||||
|
||||
if (*htblptr == NULL)
|
||||
*htblptr = jpeg_alloc_huff_table(cinfo);
|
||||
else if (cinfo->is_decompressor)
|
||||
return;
|
||||
|
||||
/* Copy the number-of-symbols-of-each-code-length counts */
|
||||
memcpy((*htblptr)->bits, bits, sizeof((*htblptr)->bits));
|
||||
|
||||
/* Validate the counts. We do this here mainly so we can copy the right
|
||||
* number of symbols from the val[] array, without risking marching off
|
||||
* the end of memory. jchuff.c will do a more thorough test later.
|
||||
*/
|
||||
nsymbols = 0;
|
||||
for (len = 1; len <= 16; len++)
|
||||
nsymbols += bits[len];
|
||||
if (nsymbols < 1 || nsymbols > 256)
|
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||
|
||||
memcpy((*htblptr)->huffval, val, nsymbols * sizeof(UINT8));
|
||||
memset(&((*htblptr)->huffval[nsymbols]), 0,
|
||||
(256 - nsymbols) * sizeof(UINT8));
|
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */
|
||||
(*htblptr)->sent_table = FALSE;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
std_huff_tables(j_common_ptr cinfo)
|
||||
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
|
||||
/* IMPORTANT: these are only valid for 8-bit data precision! */
|
||||
{
|
||||
JHUFF_TBL **dc_huff_tbl_ptrs, **ac_huff_tbl_ptrs;
|
||||
|
||||
static const UINT8 bits_dc_luminance[17] = {
|
||||
/* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
static const UINT8 val_dc_luminance[] = {
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
|
||||
};
|
||||
|
||||
static const UINT8 bits_dc_chrominance[17] = {
|
||||
/* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0
|
||||
};
|
||||
static const UINT8 val_dc_chrominance[] = {
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
|
||||
};
|
||||
|
||||
static const UINT8 bits_ac_luminance[17] = {
|
||||
/* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d
|
||||
};
|
||||
static const UINT8 val_ac_luminance[] = {
|
||||
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
|
||||
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
|
||||
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
|
||||
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
|
||||
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
|
||||
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
|
||||
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
|
||||
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
|
||||
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
|
||||
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
|
||||
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
|
||||
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
|
||||
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
|
||||
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
|
||||
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
|
||||
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
|
||||
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
|
||||
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
|
||||
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
|
||||
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa
|
||||
};
|
||||
|
||||
static const UINT8 bits_ac_chrominance[17] = {
|
||||
/* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77
|
||||
};
|
||||
static const UINT8 val_ac_chrominance[] = {
|
||||
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
|
||||
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
|
||||
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
|
||||
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
|
||||
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
|
||||
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
|
||||
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
|
||||
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
|
||||
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
|
||||
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
|
||||
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
|
||||
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
||||
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
|
||||
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
|
||||
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
|
||||
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
|
||||
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
|
||||
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
|
||||
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
|
||||
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa
|
||||
};
|
||||
|
||||
if (cinfo->is_decompressor) {
|
||||
dc_huff_tbl_ptrs = ((j_decompress_ptr)cinfo)->dc_huff_tbl_ptrs;
|
||||
ac_huff_tbl_ptrs = ((j_decompress_ptr)cinfo)->ac_huff_tbl_ptrs;
|
||||
} else {
|
||||
dc_huff_tbl_ptrs = ((j_compress_ptr)cinfo)->dc_huff_tbl_ptrs;
|
||||
ac_huff_tbl_ptrs = ((j_compress_ptr)cinfo)->ac_huff_tbl_ptrs;
|
||||
}
|
||||
|
||||
add_huff_table(cinfo, &dc_huff_tbl_ptrs[0], bits_dc_luminance,
|
||||
val_dc_luminance);
|
||||
add_huff_table(cinfo, &ac_huff_tbl_ptrs[0], bits_ac_luminance,
|
||||
val_ac_luminance);
|
||||
add_huff_table(cinfo, &dc_huff_tbl_ptrs[1], bits_dc_chrominance,
|
||||
val_dc_chrominance);
|
||||
add_huff_table(cinfo, &ac_huff_tbl_ptrs[1], bits_ac_chrominance,
|
||||
val_ac_chrominance);
|
||||
}
|
||||
148
thirdparty/libjpeg-turbo/src/jutils.c
vendored
Normal file
148
thirdparty/libjpeg-turbo/src/jutils.c
vendored
Normal file
@@ -0,0 +1,148 @@
|
||||
/*
|
||||
* jutils.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2022, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains tables and miscellaneous utility routines needed
|
||||
* for both compression and decompression.
|
||||
* Note we prefix all global names with "j" to minimize conflicts with
|
||||
* a surrounding application.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jsamplecomp.h"
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
|
||||
/*
|
||||
* jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
|
||||
* of a DCT block read in natural order (left to right, top to bottom).
|
||||
*/
|
||||
|
||||
#if 0 /* This table is not actually needed in v6a */
|
||||
|
||||
const int jpeg_zigzag_order[DCTSIZE2] = {
|
||||
0, 1, 5, 6, 14, 15, 27, 28,
|
||||
2, 4, 7, 13, 16, 26, 29, 42,
|
||||
3, 8, 12, 17, 25, 30, 41, 43,
|
||||
9, 11, 18, 24, 31, 40, 44, 53,
|
||||
10, 19, 23, 32, 39, 45, 52, 54,
|
||||
20, 22, 33, 38, 46, 51, 55, 60,
|
||||
21, 34, 37, 47, 50, 56, 59, 61,
|
||||
35, 36, 48, 49, 57, 58, 62, 63
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* jpeg_natural_order[i] is the natural-order position of the i'th element
|
||||
* of zigzag order.
|
||||
*
|
||||
* When reading corrupted data, the Huffman decoders could attempt
|
||||
* to reference an entry beyond the end of this array (if the decoded
|
||||
* zero run length reaches past the end of the block). To prevent
|
||||
* wild stores without adding an inner-loop test, we put some extra
|
||||
* "63"s after the real entries. This will cause the extra coefficient
|
||||
* to be stored in location 63 of the block, not somewhere random.
|
||||
* The worst case would be a run-length of 15, which means we need 16
|
||||
* fake entries.
|
||||
*/
|
||||
|
||||
const int jpeg_natural_order[DCTSIZE2 + 16] = {
|
||||
0, 1, 8, 16, 9, 2, 3, 10,
|
||||
17, 24, 32, 25, 18, 11, 4, 5,
|
||||
12, 19, 26, 33, 40, 48, 41, 34,
|
||||
27, 20, 13, 6, 7, 14, 21, 28,
|
||||
35, 42, 49, 56, 57, 50, 43, 36,
|
||||
29, 22, 15, 23, 30, 37, 44, 51,
|
||||
58, 59, 52, 45, 38, 31, 39, 46,
|
||||
53, 60, 61, 54, 47, 55, 62, 63,
|
||||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
|
||||
63, 63, 63, 63, 63, 63, 63, 63
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Arithmetic utilities
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jdiv_round_up(long a, long b)
|
||||
/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
|
||||
/* Assumes a >= 0, b > 0 */
|
||||
{
|
||||
return (a + b - 1L) / b;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(long)
|
||||
jround_up(long a, long b)
|
||||
/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
|
||||
/* Assumes a >= 0, b > 0 */
|
||||
{
|
||||
a += b - 1L;
|
||||
return a - (a % b);
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 8 */
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16 || \
|
||||
defined(C_LOSSLESS_SUPPORTED) || defined(D_LOSSLESS_SUPPORTED)
|
||||
|
||||
GLOBAL(void)
|
||||
_jcopy_sample_rows(_JSAMPARRAY input_array, int source_row,
|
||||
_JSAMPARRAY output_array, int dest_row, int num_rows,
|
||||
JDIMENSION num_cols)
|
||||
/* Copy some rows of samples from one place to another.
|
||||
* num_rows rows are copied from input_array[source_row++]
|
||||
* to output_array[dest_row++]; these areas may overlap for duplication.
|
||||
* The source and destination arrays must be at least as wide as num_cols.
|
||||
*/
|
||||
{
|
||||
register _JSAMPROW inptr, outptr;
|
||||
register size_t count = (size_t)(num_cols * sizeof(_JSAMPLE));
|
||||
register int row;
|
||||
|
||||
input_array += source_row;
|
||||
output_array += dest_row;
|
||||
|
||||
for (row = num_rows; row > 0; row--) {
|
||||
inptr = *input_array++;
|
||||
outptr = *output_array++;
|
||||
memcpy(outptr, inptr, count);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE != 16 ||
|
||||
defined(C_LOSSLESS_SUPPORTED) || defined(D_LOSSLESS_SUPPORTED) */
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
|
||||
GLOBAL(void)
|
||||
jcopy_block_row(JBLOCKROW input_row, JBLOCKROW output_row,
|
||||
JDIMENSION num_blocks)
|
||||
/* Copy a row of coefficient blocks from one place to another. */
|
||||
{
|
||||
memcpy(output_row, input_row, num_blocks * (DCTSIZE2 * sizeof(JCOEF)));
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jzero_far(void *target, size_t bytestozero)
|
||||
/* Zero out a chunk of memory. */
|
||||
/* This might be sample-array data, block-array data, or alloc_large data. */
|
||||
{
|
||||
memset(target, 0, bytestozero);
|
||||
}
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 8 */
|
||||
58
thirdparty/libjpeg-turbo/src/jversion.h
vendored
Normal file
58
thirdparty/libjpeg-turbo/src/jversion.h
vendored
Normal file
@@ -0,0 +1,58 @@
|
||||
// Originally generated by libjpeg-turbo's cmake build, then modified to support multiple platforms.
|
||||
|
||||
/*
|
||||
* jversion.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-2020, Thomas G. Lane, Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2010, 2012-2024, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains software version identification.
|
||||
*/
|
||||
|
||||
|
||||
#if JPEG_LIB_VERSION >= 80
|
||||
|
||||
#define JVERSION "8d 15-Jan-2012"
|
||||
|
||||
#elif JPEG_LIB_VERSION >= 70
|
||||
|
||||
#define JVERSION "7 27-Jun-2009"
|
||||
|
||||
#else
|
||||
|
||||
#define JVERSION "6b 27-Mar-1998"
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* NOTE: It is our convention to place the authors in the following order:
|
||||
* - libjpeg-turbo authors (2009-) in descending order of the date of their
|
||||
* most recent contribution to the project, then in ascending order of the
|
||||
* date of their first contribution to the project, then in alphabetical
|
||||
* order
|
||||
* - Upstream authors in descending order of the date of the first inclusion of
|
||||
* their code
|
||||
*/
|
||||
|
||||
#define JCOPYRIGHT1 \
|
||||
"Copyright (C) 2009-2024 D. R. Commander\n" \
|
||||
"Copyright (C) 2015, 2020 Google, Inc.\n" \
|
||||
"Copyright (C) 2019-2020 Arm Limited\n" \
|
||||
"Copyright (C) 2015-2016, 2018 Matthieu Darbois\n" \
|
||||
"Copyright (C) 2011-2016 Siarhei Siamashka\n" \
|
||||
"Copyright (C) 2015 Intel Corporation\n"
|
||||
#define JCOPYRIGHT2 \
|
||||
"Copyright (C) 2013-2014 Linaro Limited\n" \
|
||||
"Copyright (C) 2013-2014 MIPS Technologies, Inc.\n" \
|
||||
"Copyright (C) 2009, 2012 Pierre Ossman for Cendio AB\n" \
|
||||
"Copyright (C) 2009-2011 Nokia Corporation and/or its subsidiary(-ies)\n" \
|
||||
"Copyright (C) 1999-2006 MIYASAKA Masaru\n" \
|
||||
"Copyright (C) 1999 Ken Murchison\n" \
|
||||
"Copyright (C) 1991-2020 Thomas G. Lane, Guido Vollbeding\n"
|
||||
|
||||
#define JCOPYRIGHT_SHORT \
|
||||
"Copyright (C) 1991-2024 The libjpeg-turbo Project and many others"
|
||||
53
thirdparty/libjpeg-turbo/src/tjutil.h
vendored
Normal file
53
thirdparty/libjpeg-turbo/src/tjutil.h
vendored
Normal file
@@ -0,0 +1,53 @@
|
||||
/*
|
||||
* Copyright (C)2011, 2022 D. R. Commander. All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* - Neither the name of the libjpeg-turbo Project nor the names of its
|
||||
* contributors may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS",
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifdef _WIN32
|
||||
#ifndef strcasecmp
|
||||
#define strcasecmp stricmp
|
||||
#endif
|
||||
#ifndef strncasecmp
|
||||
#define strncasecmp strnicmp
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define SNPRINTF(str, n, format, ...) \
|
||||
_snprintf_s(str, n, _TRUNCATE, format, ##__VA_ARGS__)
|
||||
#else
|
||||
#define SNPRINTF snprintf
|
||||
#endif
|
||||
|
||||
#ifndef min
|
||||
#define min(a, b) ((a) < (b) ? (a) : (b))
|
||||
#endif
|
||||
|
||||
#ifndef max
|
||||
#define max(a, b) ((a) > (b) ? (a) : (b))
|
||||
#endif
|
||||
|
||||
extern double getTime(void);
|
||||
2388
thirdparty/libjpeg-turbo/src/transupp.c
vendored
Normal file
2388
thirdparty/libjpeg-turbo/src/transupp.c
vendored
Normal file
File diff suppressed because it is too large
Load Diff
231
thirdparty/libjpeg-turbo/src/transupp.h
vendored
Normal file
231
thirdparty/libjpeg-turbo/src/transupp.h
vendored
Normal file
@@ -0,0 +1,231 @@
|
||||
/*
|
||||
* transupp.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1997-2019, Thomas G. Lane, Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2017, 2021, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains declarations for image transformation routines and
|
||||
* other utility code used by the jpegtran sample application. These are
|
||||
* NOT part of the core JPEG library. But we keep these routines separate
|
||||
* from jpegtran.c to ease the task of maintaining jpegtran-like programs
|
||||
* that have other user interfaces.
|
||||
*
|
||||
* NOTE: all the routines declared here have very specific requirements
|
||||
* about when they are to be executed during the reading and writing of the
|
||||
* source and destination files. See the comments in transupp.c, or see
|
||||
* jpegtran.c for an example of correct usage.
|
||||
*/
|
||||
|
||||
/* If you happen not to want the image transform support, disable it here */
|
||||
#ifndef TRANSFORMS_SUPPORTED
|
||||
#define TRANSFORMS_SUPPORTED 1 /* 0 disables transform code */
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Although rotating and flipping data expressed as DCT coefficients is not
|
||||
* hard, there is an asymmetry in the JPEG format specification for images
|
||||
* whose dimensions aren't multiples of the iMCU size. The right and bottom
|
||||
* image edges are padded out to the next iMCU boundary with junk data; but
|
||||
* no padding is possible at the top and left edges. If we were to flip
|
||||
* the whole image including the pad data, then pad garbage would become
|
||||
* visible at the top and/or left, and real pixels would disappear into the
|
||||
* pad margins --- perhaps permanently, since encoders & decoders may not
|
||||
* bother to preserve DCT blocks that appear to be completely outside the
|
||||
* nominal image area. So, we have to exclude any partial iMCUs from the
|
||||
* basic transformation.
|
||||
*
|
||||
* Transpose is the only transformation that can handle partial iMCUs at the
|
||||
* right and bottom edges completely cleanly. flip_h can flip partial iMCUs
|
||||
* at the bottom, but leaves any partial iMCUs at the right edge untouched.
|
||||
* Similarly flip_v leaves any partial iMCUs at the bottom edge untouched.
|
||||
* The other transforms are defined as combinations of these basic transforms
|
||||
* and process edge blocks in a way that preserves the equivalence.
|
||||
*
|
||||
* The "trim" option causes untransformable partial iMCUs to be dropped;
|
||||
* this is not strictly lossless, but it usually gives the best-looking
|
||||
* result for odd-size images. Note that when this option is active,
|
||||
* the expected mathematical equivalences between the transforms may not hold.
|
||||
* (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim
|
||||
* followed by -rot 180 -trim trims both edges.)
|
||||
*
|
||||
* We also offer a lossless-crop option, which discards data outside a given
|
||||
* image region but losslessly preserves what is inside. Like the rotate and
|
||||
* flip transforms, lossless crop is restricted by the JPEG format: the upper
|
||||
* left corner of the selected region must fall on an iMCU boundary. If this
|
||||
* does not hold for the given crop parameters, we silently move the upper left
|
||||
* corner up and/or left to make it so, simultaneously increasing the region
|
||||
* dimensions to keep the lower right crop corner unchanged. (Thus, the
|
||||
* output image covers at least the requested region, but may cover more.)
|
||||
* The adjustment of the region dimensions may be optionally disabled.
|
||||
*
|
||||
* A complementary lossless wipe option is provided to discard (gray out) data
|
||||
* inside a given image region while losslessly preserving what is outside.
|
||||
* A lossless drop option is also provided, which allows another JPEG image to
|
||||
* be inserted ("dropped") into the source image data at a given position,
|
||||
* replacing the existing image data at that position. Both the source image
|
||||
* and the drop image must have the same subsampling level. It is best if they
|
||||
* also have the same quantization (quality.) Otherwise, the quantization of
|
||||
* the output image will be adapted to accommodate the higher of the source
|
||||
* image quality and the drop image quality. The trim option can be used with
|
||||
* the drop option to requantize the drop image to match the source image.
|
||||
*
|
||||
* We also provide a lossless-resize option, which is kind of a lossless-crop
|
||||
* operation in the DCT coefficient block domain - it discards higher-order
|
||||
* coefficients and losslessly preserves lower-order coefficients of a
|
||||
* sub-block.
|
||||
*
|
||||
* Rotate/flip transform, resize, and crop can be requested together in a
|
||||
* single invocation. The crop is applied last --- that is, the crop region
|
||||
* is specified in terms of the destination image after transform/resize.
|
||||
*
|
||||
* We also offer a "force to grayscale" option, which simply discards the
|
||||
* chrominance channels of a YCbCr image. This is lossless in the sense that
|
||||
* the luminance channel is preserved exactly. It's not the same kind of
|
||||
* thing as the rotate/flip transformations, but it's convenient to handle it
|
||||
* as part of this package, mainly because the transformation routines have to
|
||||
* be aware of the option to know how many components to work on.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Codes for supported types of image transformations.
|
||||
*/
|
||||
|
||||
typedef enum {
|
||||
JXFORM_NONE, /* no transformation */
|
||||
JXFORM_FLIP_H, /* horizontal flip */
|
||||
JXFORM_FLIP_V, /* vertical flip */
|
||||
JXFORM_TRANSPOSE, /* transpose across UL-to-LR axis */
|
||||
JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */
|
||||
JXFORM_ROT_90, /* 90-degree clockwise rotation */
|
||||
JXFORM_ROT_180, /* 180-degree rotation */
|
||||
JXFORM_ROT_270, /* 270-degree clockwise (or 90 ccw) */
|
||||
JXFORM_WIPE, /* wipe */
|
||||
JXFORM_DROP /* drop */
|
||||
} JXFORM_CODE;
|
||||
|
||||
/*
|
||||
* Codes for crop parameters, which can individually be unspecified,
|
||||
* positive or negative for xoffset or yoffset,
|
||||
* positive or force or reflect for width or height.
|
||||
*/
|
||||
|
||||
typedef enum {
|
||||
JCROP_UNSET,
|
||||
JCROP_POS,
|
||||
JCROP_NEG,
|
||||
JCROP_FORCE,
|
||||
JCROP_REFLECT
|
||||
} JCROP_CODE;
|
||||
|
||||
/*
|
||||
* Transform parameters struct.
|
||||
* NB: application must not change any elements of this struct after
|
||||
* calling jtransform_request_workspace.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
/* Options: set by caller */
|
||||
JXFORM_CODE transform; /* image transform operator */
|
||||
boolean perfect; /* if TRUE, fail if partial MCUs are requested */
|
||||
boolean trim; /* if TRUE, trim partial MCUs as needed */
|
||||
boolean force_grayscale; /* if TRUE, convert color image to grayscale */
|
||||
boolean crop; /* if TRUE, crop or wipe source image, or drop */
|
||||
boolean slow_hflip; /* For best performance, the JXFORM_FLIP_H transform
|
||||
normally modifies the source coefficients in place.
|
||||
Setting this to TRUE will instead use a slower,
|
||||
double-buffered algorithm, which leaves the source
|
||||
coefficients in tact (necessary if other transformed
|
||||
images must be generated from the same set of
|
||||
coefficients. */
|
||||
|
||||
/* Crop parameters: application need not set these unless crop is TRUE.
|
||||
* These can be filled in by jtransform_parse_crop_spec().
|
||||
*/
|
||||
JDIMENSION crop_width; /* Width of selected region */
|
||||
JCROP_CODE crop_width_set; /* (force-disables adjustment) */
|
||||
JDIMENSION crop_height; /* Height of selected region */
|
||||
JCROP_CODE crop_height_set; /* (force-disables adjustment) */
|
||||
JDIMENSION crop_xoffset; /* X offset of selected region */
|
||||
JCROP_CODE crop_xoffset_set; /* (negative measures from right edge) */
|
||||
JDIMENSION crop_yoffset; /* Y offset of selected region */
|
||||
JCROP_CODE crop_yoffset_set; /* (negative measures from bottom edge) */
|
||||
|
||||
/* Drop parameters: set by caller for drop request */
|
||||
j_decompress_ptr drop_ptr;
|
||||
jvirt_barray_ptr *drop_coef_arrays;
|
||||
|
||||
/* Internal workspace: caller should not touch these */
|
||||
int num_components; /* # of components in workspace */
|
||||
jvirt_barray_ptr *workspace_coef_arrays; /* workspace for transformations */
|
||||
JDIMENSION output_width; /* cropped destination dimensions */
|
||||
JDIMENSION output_height;
|
||||
JDIMENSION x_crop_offset; /* destination crop offsets measured in iMCUs */
|
||||
JDIMENSION y_crop_offset;
|
||||
JDIMENSION drop_width; /* drop/wipe dimensions measured in iMCUs */
|
||||
JDIMENSION drop_height;
|
||||
int iMCU_sample_width; /* destination iMCU size */
|
||||
int iMCU_sample_height;
|
||||
} jpeg_transform_info;
|
||||
|
||||
|
||||
#if TRANSFORMS_SUPPORTED
|
||||
|
||||
/* Parse a crop specification (written in X11 geometry style) */
|
||||
EXTERN(boolean) jtransform_parse_crop_spec(jpeg_transform_info *info,
|
||||
const char *spec);
|
||||
/* Request any required workspace */
|
||||
EXTERN(boolean) jtransform_request_workspace(j_decompress_ptr srcinfo,
|
||||
jpeg_transform_info *info);
|
||||
/* Adjust output image parameters */
|
||||
EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters
|
||||
(j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
||||
jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info);
|
||||
/* Execute the actual transformation, if any */
|
||||
EXTERN(void) jtransform_execute_transform(j_decompress_ptr srcinfo,
|
||||
j_compress_ptr dstinfo,
|
||||
jvirt_barray_ptr *src_coef_arrays,
|
||||
jpeg_transform_info *info);
|
||||
/* Determine whether lossless transformation is perfectly
|
||||
* possible for a specified image and transformation.
|
||||
*/
|
||||
EXTERN(boolean) jtransform_perfect_transform(JDIMENSION image_width,
|
||||
JDIMENSION image_height,
|
||||
int MCU_width, int MCU_height,
|
||||
JXFORM_CODE transform);
|
||||
|
||||
/* jtransform_execute_transform used to be called
|
||||
* jtransform_execute_transformation, but some compilers complain about
|
||||
* routine names that long. This macro is here to avoid breaking any
|
||||
* old source code that uses the original name...
|
||||
*/
|
||||
#define jtransform_execute_transformation jtransform_execute_transform
|
||||
|
||||
#endif /* TRANSFORMS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Support for copying optional markers from source to destination file.
|
||||
*/
|
||||
|
||||
typedef enum {
|
||||
JCOPYOPT_NONE, /* copy no optional markers */
|
||||
JCOPYOPT_COMMENTS, /* copy only comment (COM) markers */
|
||||
JCOPYOPT_ALL, /* copy all optional markers */
|
||||
JCOPYOPT_ALL_EXCEPT_ICC, /* copy all optional markers except APP2 */
|
||||
JCOPYOPT_ICC /* copy only ICC profile (APP2) markers */
|
||||
} JCOPY_OPTION;
|
||||
|
||||
#define JCOPYOPT_DEFAULT JCOPYOPT_COMMENTS /* recommended default */
|
||||
|
||||
/* Setup decompression object to save desired markers in memory */
|
||||
EXTERN(void) jcopy_markers_setup(j_decompress_ptr srcinfo,
|
||||
JCOPY_OPTION option);
|
||||
/* Copy markers saved in the given source object to the destination object */
|
||||
EXTERN(void) jcopy_markers_execute(j_decompress_ptr srcinfo,
|
||||
j_compress_ptr dstinfo,
|
||||
JCOPY_OPTION option);
|
||||
297
thirdparty/libjpeg-turbo/src/turbojpeg-mp.c
vendored
Normal file
297
thirdparty/libjpeg-turbo/src/turbojpeg-mp.c
vendored
Normal file
@@ -0,0 +1,297 @@
|
||||
/*
|
||||
* Copyright (C)2009-2024 D. R. Commander. All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* - Neither the name of the libjpeg-turbo Project nor the names of its
|
||||
* contributors may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS",
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/* TurboJPEG API functions that must be compiled for multiple data
|
||||
precisions */
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define _JSAMPLE JSAMPLE
|
||||
#define _JSAMPROW JSAMPROW
|
||||
#define _buffer buffer
|
||||
#define _jinit_read_ppm jinit_read_ppm
|
||||
#define _jinit_write_ppm jinit_write_ppm
|
||||
#define _jpeg_crop_scanline jpeg_crop_scanline
|
||||
#define _jpeg_read_scanlines jpeg_read_scanlines
|
||||
#define _jpeg_skip_scanlines jpeg_skip_scanlines
|
||||
#define _jpeg_write_scanlines jpeg_write_scanlines
|
||||
#elif BITS_IN_JSAMPLE == 12
|
||||
#define _JSAMPLE J12SAMPLE
|
||||
#define _JSAMPROW J12SAMPROW
|
||||
#define _buffer buffer12
|
||||
#define _jinit_read_ppm j12init_read_ppm
|
||||
#define _jinit_write_ppm j12init_write_ppm
|
||||
#define _jpeg_crop_scanline jpeg12_crop_scanline
|
||||
#define _jpeg_read_scanlines jpeg12_read_scanlines
|
||||
#define _jpeg_skip_scanlines jpeg12_skip_scanlines
|
||||
#define _jpeg_write_scanlines jpeg12_write_scanlines
|
||||
#elif BITS_IN_JSAMPLE == 16
|
||||
#define _JSAMPLE J16SAMPLE
|
||||
#define _JSAMPROW J16SAMPROW
|
||||
#define _buffer buffer16
|
||||
#define _jinit_read_ppm j16init_read_ppm
|
||||
#define _jinit_write_ppm j16init_write_ppm
|
||||
#define _jpeg_read_scanlines jpeg16_read_scanlines
|
||||
#define _jpeg_write_scanlines jpeg16_write_scanlines
|
||||
#endif
|
||||
|
||||
#define _GET_NAME(name, suffix) name##suffix
|
||||
#define GET_NAME(name, suffix) _GET_NAME(name, suffix)
|
||||
#define _GET_STRING(name, suffix) #name #suffix
|
||||
#define GET_STRING(name, suffix) _GET_STRING(name, suffix)
|
||||
|
||||
|
||||
/******************************** Compressor *********************************/
|
||||
|
||||
/* TurboJPEG 3.0+ */
|
||||
DLLEXPORT int GET_NAME(tj3Compress, BITS_IN_JSAMPLE)
|
||||
(tjhandle handle, const _JSAMPLE *srcBuf, int width, int pitch, int height,
|
||||
int pixelFormat, unsigned char **jpegBuf, size_t *jpegSize)
|
||||
{
|
||||
static const char FUNCTION_NAME[] = GET_STRING(tj3Compress, BITS_IN_JSAMPLE);
|
||||
int i, retval = 0;
|
||||
boolean alloc = TRUE;
|
||||
_JSAMPROW *row_pointer = NULL;
|
||||
|
||||
GET_CINSTANCE(handle)
|
||||
if ((this->init & COMPRESS) == 0)
|
||||
THROW("Instance has not been initialized for compression");
|
||||
|
||||
if (srcBuf == NULL || width <= 0 || pitch < 0 || height <= 0 ||
|
||||
pixelFormat < 0 || pixelFormat >= TJ_NUMPF || jpegBuf == NULL ||
|
||||
jpegSize == NULL)
|
||||
THROW("Invalid argument");
|
||||
|
||||
if (!this->lossless && this->quality == -1)
|
||||
THROW("TJPARAM_QUALITY must be specified");
|
||||
if (!this->lossless && this->subsamp == TJSAMP_UNKNOWN)
|
||||
THROW("TJPARAM_SUBSAMP must be specified");
|
||||
|
||||
if (pitch == 0) pitch = width * tjPixelSize[pixelFormat];
|
||||
|
||||
if ((row_pointer = (_JSAMPROW *)malloc(sizeof(_JSAMPROW) * height)) == NULL)
|
||||
THROW("Memory allocation failure");
|
||||
|
||||
if (setjmp(this->jerr.setjmp_buffer)) {
|
||||
/* If we get here, the JPEG code has signaled an error. */
|
||||
retval = -1; goto bailout;
|
||||
}
|
||||
|
||||
cinfo->image_width = width;
|
||||
cinfo->image_height = height;
|
||||
cinfo->data_precision = BITS_IN_JSAMPLE;
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
if (this->lossless && this->precision >= 2 &&
|
||||
this->precision <= BITS_IN_JSAMPLE)
|
||||
#else
|
||||
if (this->lossless && this->precision >= BITS_IN_JSAMPLE - 3 &&
|
||||
this->precision <= BITS_IN_JSAMPLE)
|
||||
#endif
|
||||
cinfo->data_precision = this->precision;
|
||||
|
||||
setCompDefaults(this, pixelFormat);
|
||||
if (this->noRealloc) alloc = FALSE;
|
||||
jpeg_mem_dest_tj(cinfo, jpegBuf, jpegSize, alloc);
|
||||
|
||||
jpeg_start_compress(cinfo, TRUE);
|
||||
if (this->iccBuf != NULL && this->iccSize != 0)
|
||||
jpeg_write_icc_profile(cinfo, this->iccBuf, (unsigned int)this->iccSize);
|
||||
for (i = 0; i < height; i++) {
|
||||
if (this->bottomUp)
|
||||
row_pointer[i] = (_JSAMPROW)&srcBuf[(height - i - 1) * (size_t)pitch];
|
||||
else
|
||||
row_pointer[i] = (_JSAMPROW)&srcBuf[i * (size_t)pitch];
|
||||
}
|
||||
while (cinfo->next_scanline < cinfo->image_height)
|
||||
_jpeg_write_scanlines(cinfo, &row_pointer[cinfo->next_scanline],
|
||||
cinfo->image_height - cinfo->next_scanline);
|
||||
jpeg_finish_compress(cinfo);
|
||||
|
||||
bailout:
|
||||
if (cinfo->global_state > CSTATE_START && alloc)
|
||||
(*cinfo->dest->term_destination) (cinfo);
|
||||
if (cinfo->global_state > CSTATE_START || retval == -1)
|
||||
jpeg_abort_compress(cinfo);
|
||||
free(row_pointer);
|
||||
if (this->jerr.warning) retval = -1;
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
/******************************* Decompressor ********************************/
|
||||
|
||||
/* TurboJPEG 3.0+ */
|
||||
DLLEXPORT int GET_NAME(tj3Decompress, BITS_IN_JSAMPLE)
|
||||
(tjhandle handle, const unsigned char *jpegBuf, size_t jpegSize,
|
||||
_JSAMPLE *dstBuf, int pitch, int pixelFormat)
|
||||
{
|
||||
static const char FUNCTION_NAME[] =
|
||||
GET_STRING(tj3Decompress, BITS_IN_JSAMPLE);
|
||||
_JSAMPROW *row_pointer = NULL;
|
||||
int croppedHeight, i, retval = 0;
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
int scaledWidth;
|
||||
#endif
|
||||
struct my_progress_mgr progress;
|
||||
|
||||
GET_DINSTANCE(handle);
|
||||
if ((this->init & DECOMPRESS) == 0)
|
||||
THROW("Instance has not been initialized for decompression");
|
||||
|
||||
if (jpegBuf == NULL || jpegSize <= 0 || dstBuf == NULL || pitch < 0 ||
|
||||
pixelFormat < 0 || pixelFormat >= TJ_NUMPF)
|
||||
THROW("Invalid argument");
|
||||
|
||||
if (this->scanLimit) {
|
||||
memset(&progress, 0, sizeof(struct my_progress_mgr));
|
||||
progress.pub.progress_monitor = my_progress_monitor;
|
||||
progress.this = this;
|
||||
dinfo->progress = &progress.pub;
|
||||
} else
|
||||
dinfo->progress = NULL;
|
||||
|
||||
dinfo->mem->max_memory_to_use = (long)this->maxMemory * 1048576L;
|
||||
|
||||
if (setjmp(this->jerr.setjmp_buffer)) {
|
||||
/* If we get here, the JPEG code has signaled an error. */
|
||||
retval = -1; goto bailout;
|
||||
}
|
||||
|
||||
if (dinfo->global_state <= DSTATE_INHEADER) {
|
||||
jpeg_mem_src_tj(dinfo, jpegBuf, jpegSize);
|
||||
jpeg_read_header(dinfo, TRUE);
|
||||
}
|
||||
setDecompParameters(this);
|
||||
if (this->maxPixels &&
|
||||
(unsigned long long)this->jpegWidth * this->jpegHeight >
|
||||
(unsigned long long)this->maxPixels)
|
||||
THROW("Image is too large");
|
||||
this->dinfo.out_color_space = pf2cs[pixelFormat];
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
scaledWidth = TJSCALED(dinfo->image_width, this->scalingFactor);
|
||||
#endif
|
||||
dinfo->do_fancy_upsampling = !this->fastUpsample;
|
||||
this->dinfo.dct_method = this->fastDCT ? JDCT_FASTEST : JDCT_ISLOW;
|
||||
|
||||
dinfo->scale_num = this->scalingFactor.num;
|
||||
dinfo->scale_denom = this->scalingFactor.denom;
|
||||
|
||||
jpeg_start_decompress(dinfo);
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
if (this->croppingRegion.x != 0 ||
|
||||
(this->croppingRegion.w != 0 && this->croppingRegion.w != scaledWidth)) {
|
||||
JDIMENSION crop_x = this->croppingRegion.x;
|
||||
JDIMENSION crop_w = this->croppingRegion.w;
|
||||
|
||||
_jpeg_crop_scanline(dinfo, &crop_x, &crop_w);
|
||||
if ((int)crop_x != this->croppingRegion.x)
|
||||
THROWI("Unexplained mismatch between specified (%d) and\n"
|
||||
"actual (%d) cropping region left boundary",
|
||||
this->croppingRegion.x, (int)crop_x);
|
||||
if ((int)crop_w != this->croppingRegion.w)
|
||||
THROWI("Unexplained mismatch between specified (%d) and\n"
|
||||
"actual (%d) cropping region width",
|
||||
this->croppingRegion.w, (int)crop_w);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (pitch == 0) pitch = dinfo->output_width * tjPixelSize[pixelFormat];
|
||||
|
||||
croppedHeight = dinfo->output_height;
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
if (this->croppingRegion.y != 0 || this->croppingRegion.h != 0)
|
||||
croppedHeight = this->croppingRegion.h;
|
||||
#endif
|
||||
if ((row_pointer =
|
||||
(_JSAMPROW *)malloc(sizeof(_JSAMPROW) * croppedHeight)) == NULL)
|
||||
THROW("Memory allocation failure");
|
||||
if (setjmp(this->jerr.setjmp_buffer)) {
|
||||
/* If we get here, the JPEG code has signaled an error. */
|
||||
retval = -1; goto bailout;
|
||||
}
|
||||
for (i = 0; i < (int)croppedHeight; i++) {
|
||||
if (this->bottomUp)
|
||||
row_pointer[i] = &dstBuf[(croppedHeight - i - 1) * (size_t)pitch];
|
||||
else
|
||||
row_pointer[i] = &dstBuf[i * (size_t)pitch];
|
||||
}
|
||||
|
||||
#if BITS_IN_JSAMPLE != 16
|
||||
if (this->croppingRegion.y != 0 || this->croppingRegion.h != 0) {
|
||||
if (this->croppingRegion.y != 0) {
|
||||
JDIMENSION lines = _jpeg_skip_scanlines(dinfo, this->croppingRegion.y);
|
||||
|
||||
if ((int)lines != this->croppingRegion.y)
|
||||
THROWI("Unexplained mismatch between specified (%d) and\n"
|
||||
"actual (%d) cropping region upper boundary",
|
||||
this->croppingRegion.y, (int)lines);
|
||||
}
|
||||
while ((int)dinfo->output_scanline <
|
||||
this->croppingRegion.y + this->croppingRegion.h)
|
||||
_jpeg_read_scanlines(dinfo, &row_pointer[dinfo->output_scanline -
|
||||
this->croppingRegion.y],
|
||||
this->croppingRegion.y + this->croppingRegion.h -
|
||||
dinfo->output_scanline);
|
||||
if (this->croppingRegion.y + this->croppingRegion.h !=
|
||||
(int)dinfo->output_height) {
|
||||
JDIMENSION lines = _jpeg_skip_scanlines(dinfo, dinfo->output_height -
|
||||
this->croppingRegion.y -
|
||||
this->croppingRegion.h);
|
||||
|
||||
if (lines != dinfo->output_height - this->croppingRegion.y -
|
||||
this->croppingRegion.h)
|
||||
THROWI("Unexplained mismatch between specified (%d) and\n"
|
||||
"actual (%d) cropping region lower boundary",
|
||||
this->croppingRegion.y + this->croppingRegion.h,
|
||||
(int)(dinfo->output_height - lines));
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
while (dinfo->output_scanline < dinfo->output_height)
|
||||
_jpeg_read_scanlines(dinfo, &row_pointer[dinfo->output_scanline],
|
||||
dinfo->output_height - dinfo->output_scanline);
|
||||
}
|
||||
jpeg_finish_decompress(dinfo);
|
||||
|
||||
bailout:
|
||||
if (dinfo->global_state > DSTATE_START) jpeg_abort_decompress(dinfo);
|
||||
free(row_pointer);
|
||||
if (this->jerr.warning) retval = -1;
|
||||
return retval;
|
||||
}
|
||||
|
||||
#undef _JSAMPLE
|
||||
#undef _JSAMPROW
|
||||
#undef _buffer
|
||||
#undef _jinit_read_ppm
|
||||
#undef _jinit_write_ppm
|
||||
#undef _jpeg_crop_scanline
|
||||
#undef _jpeg_read_scanlines
|
||||
#undef _jpeg_skip_scanlines
|
||||
#undef _jpeg_write_scanlines
|
||||
3097
thirdparty/libjpeg-turbo/src/turbojpeg.c
vendored
Normal file
3097
thirdparty/libjpeg-turbo/src/turbojpeg.c
vendored
Normal file
File diff suppressed because it is too large
Load Diff
2809
thirdparty/libjpeg-turbo/src/turbojpeg.h
vendored
Normal file
2809
thirdparty/libjpeg-turbo/src/turbojpeg.h
vendored
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user